

EECS 105 – Microelectronic Devices and Circuits

Spring 2001, Dept. EECS, UC Berkeley

Prof. A. R. Neureuther 510 Cory 642-4590

OH M11, (Tu2), W2, Th2, F11

Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee105/

Homework Assignment # 6, Due March 2, 2001

Unless stated otherwise, use the following parameters in the problems n-channel MOSFET:

 $\mu_n C_{ox} \!\!=\!\! 50 \mu A/V^2, \ V_{TOn} \!\!=\!\! 1.0 V, \ \gamma_n \!\!=\!\! 0.6 V^{1/2}, \ \lambda_n \!\!=\!\! (0.1/L) V^{-1} (\textit{L in mm}), \ \varphi_p \!\!=\!\! -0.42 V$ p-channel MOSFET:

$$\mu_p C_{ox} = 25 \mu A/V^2$$
, $V_{TOp} = -1.0 V$, $\gamma_p = 0.6 V^{1/2}$, $\lambda_p = (0.1/L) V^{-1} (\text{L in m} n)$, $\phi_n = 0.42 V$

6.1 MOSFET Capacitances

The n-channel MOSFET shown in the layout is biased at the operating point: V_G =4V, V_D =5V, V_S =1V, and V_B =0V. For this problem, include L_D =0.1um in finding the channel length L from the layout.

- (a) Find the small signal parameters g_m and r_o at this operating point.
- (b) Find the capacitances C_{gs} , C_{gd} , C_{db} , and C_{sb} . In calculating the overlap capacitances, only consider the under diffusion of the drain and source diffusion by L_D . Also you can neglect the sidewall capacitance and use a substrate doping N_a = 10^{17} cm⁻³
- (c) Draw the small-signal model for the n-channel MOSFET as is shown in Fig. 4.24. You can neglect $C_{\rm gb}$

6.2 SPICE Models for the MOSFET

Use the n-channel MOSFET from problem 6.1 in a inverter with a resistive load $R_L=10k\Omega$

- a) Write a SPICE .MODEL card for the n-channcel MOSFET (See an example in p.244), you can neglect TOX, CJSW, MJ and PB in your .MODEL card
- b) Write a SPICE device card for M₁ (See an example in p.245)
- c) Simulate the circuit in SPICE with the cards obtained in (a), (b), find out $V_{OH}(V_i=0V)$ and $V_{OL}(V_i=5V)$

d) What's the fall time t_F in your SPICE simulation when V_i switches from 0V to 5V?

6.3 Bode Plot

- a) Find the voltage transfer function $H(j\omega)=V_o(j\omega)/V_i(j\omega)$
- b) Draw the Bode plot with R1=100k Ω , R2=10k Ω and C=1pF (use radians/sec for the horizontal axis, not Hz)

6.4 Bode Plot

Assume an ideal op-amp is used in this problem

- a) Find the voltage transfer function $H(j\omega)=V_o(j\omega)/V_i(j\omega)$
- b) Draw the Bode plot with $R_1=10k\Omega$, $R_2=100k\Omega$ and $C_1=C_2=1pF$ (use radians/sec for the horizontal axis, not Hz)

