EECS 105 - Microelectronic Devices and Circuits

Homework Assignment \# 6, Due March 2, 2001
Unless stated otherwise, use the following parameters in the problems n-channel MOSFET:

$$
\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TOn}}=1.0 \mathrm{~V}, \gamma_{\mathrm{n}}=0.6 \mathrm{~V}^{1 / 2}, \lambda_{\mathrm{n}}=(0.1 / \mathrm{L}) \mathrm{V}^{-1}(L \text { in } \mu m), \phi_{\mathrm{p}}=-0.42 \mathrm{~V}
$$

p-channel MOSFET:

$$
\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=25 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TO}}=-1.0 \mathrm{~V}, \gamma_{\mathrm{p}}=0.6 \mathrm{~V}^{1 / 2}, \lambda_{\mathrm{p}}=(0.1 / \mathrm{L}) \mathrm{V}^{-1}(L \text { in } \mu m), \phi_{\mathrm{n}}=0.42 \mathrm{~V}
$$

6.1 MOSFET Capacitances

The n-channel MOSFET shown in the layout is biased at the operating point: $\mathrm{V}_{\mathrm{G}}=4 \mathrm{~V}$, $\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$. For this problem, include $\mathrm{L}_{\mathrm{D}}=0$. 1 um in finding the channel length L from the layout.
(a) Find the small signal parameters g_{m} and r_{o} at this operating point.
(b) Find the capacitances $\mathrm{C}_{\mathrm{gs}}, \mathrm{C}_{\mathrm{gd}}, \mathrm{C}_{\mathrm{db}}$, and C_{sb}. In calculating the overlap capacitances, only consider the under diffusion of the drain and source diffusion by L_{D}. Also you can neglect the sidewall capacitance and use a substrate doping $\mathrm{N}_{\mathrm{a}}=10^{17} \mathrm{~cm}^{-3}$
(c) Draw the small-signal model for the n-channel MOSFET as is shown in Fig. 4.24. You can neglect C_{gb}

6.2 SPICE Models for the MOSFET

Use the n-channel MOSFET from problem 6.1 in a inverter with a resistive load $R_{L}=10 \mathrm{k} \Omega$
a) Write a SPICE .MODEL card for the n-channcel MOSFET (See an example in p.244), you can neglect TOX, CJSW, MJ and PB in your .MODEL card
b) Write a SPICE device card for M_{1} (See an example in p .245)
c) Simulate the circuit in SPICE with the cards obtained in (a), (b), find out $\mathrm{V}_{\mathrm{OH}}\left(\mathrm{V}_{\mathrm{i}}=0 \mathrm{~V}\right)$ and $\mathrm{V}_{\mathrm{OL}}\left(\mathrm{V}_{\mathrm{i}}=5 \mathrm{~V}\right)$
d) What's the fall time t_{F} in your SPICE simulation when V_{i} switches from 0 V to 5 V ?

6.3 Bode Plot

a) Find the voltage transfer function $\mathrm{H}(\mathrm{j} \omega)=\mathrm{V}_{\mathrm{o}}(\mathrm{j} \omega) / \mathrm{V}_{\mathrm{i}}(\mathrm{j} \omega)$
b) Draw the Bode plot with $\mathrm{R} 1=100 \mathrm{k} \Omega, \mathrm{R} 2=10 \mathrm{k} \Omega$ and $\mathrm{C}=1 \mathrm{pF}$ (use radians/sec for the horizontal axis, not Hz)

6.4 Bode Plot

Assume an ideal op-amp is used in this problem
a) Find the voltage transfer function $\mathrm{H}(\mathrm{j} \omega)=\mathrm{V}_{0}(\mathrm{j} \omega) / \mathrm{V}_{\mathrm{i}}(\mathrm{j} \omega)$
b) Draw the Bode plot with $\mathrm{R}_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{2}=100 \mathrm{k} \Omega$ and $\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mathrm{pF}$ (use radians/sec for the horizontal axis, not Hz)

