

EECS 105 – Microelectronic Devices and Circuits

Spring 2001, Prof. A. R. Neureuther Dept. EECS, 510 Cory 642-4590 UC Berkeley Office Hours M11, (Tu2), W2, Th2, F11 Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee105/

SEE CORRECTION

Homework Assignment # 8, Due March 16, 2001

Designed by Xuesong Jiang

8.1 The pn Junction Diode

Device dimensions and physical parameters of a pn junction diode are listed below.

Dimensions:	Doping:	Diffusion coefficients:
$W_p=0.5\mu m$	$N_a = 5 \times 10^{17} cm^{-3}$	$D_n=5cm^2/s$
$W_n=1.0\mu m$	$N_d = 2 \times 10^{16} \text{ cm}^{-3}$	$D_p=5cm^2/s$

The pn junction has an area of A=20 μ m ×20 μ m. For a forward bias of 0.7V,

- (a) Find the diode saturation current I_0 .
- (b) Find the diode current I_D .
- (c) Find the small-signal resistance r_d .
- (d) Find the depletion capacitance C_j .
- (e) Find the diffusion capacitance C_d .
- (f) Draw the small-signal model.

You can assume $x_n \ll W_n$ and $x_p \ll W_p$.

8.2 Diodes in Circuits

Two diodes D_1 and D_2 are connected in parallel with a total of 1mA current. If D_1 has $N_a=10^{18}$ cm⁻³, \checkmark $N_d=10^{15}$ cm⁻³ and D_2 has $N_a=10^{17}$ cm⁻³, $N_d=10^{15}$ cm⁻³, find the current flow through each diode. Assume that W_p and W_n are 2.0 mm. (Hint: neglect the electron minority current and compare the built-in voltage.)

8.3 The Bipolar Junction Transistor

Device dimensions and physical parameters of a npn bipolar transistor are listed below.

Dimensions:	Doping:	Diffusion coefficients:
$W_B=0.5\mu m$	$N_{aB}=10^{17} cm^{-3}$	$D_{nB}=5cm^2/s$
$W_E=1.0\mu m$	$N_{dE} = 8 \times 10^{18} \text{ cm}^{-3}$	$D_{pE}=5cm^2/s$

(a) Sketch the minority carrier distribution under forward-active bias.

- (b) Find $\alpha_{\rm F}$.
- (c) Find forward-active current gain β_F .

8.4 BJT Operating Regions

Identify the operating region (cutoff, forward active, saturation, or reverse active) of the following npn bipolar junction transistors: (npn: β_F =100)

