

EECS 105 – Microelectronic Devices and Circuits Spring 2001, Prof. A. R. Neureuther Dept. EECS, 510 Cory 642-4590 UC Berkeley Office Hours M11, (Tu2), W2, Th2, F11 Course Web Site http://www-inst.EECS.Berkeley.EDU/~ee105/

Homework Assignment # 9, Due Wednesday March 21, 2001

The second mid-term exam will be on Friday March 23 from 10:10-11am. Please try to show up early so we can start on time and give you the full 50 minutes.

Use the following parameters for all BJT devices.

NPN	PNP
ß=100	ß=50
V _{CE-SAT} =0.1V	V _{EC-SAT} =0.1V
V _{BE} =0.7V	V _{EB} =0.7V
V _A =20V	V _A =25V
W _B =1µm	W _B =1µm
N _{ED} =10 ¹⁹ /cm ³	N _{EA} =10 ¹⁹ /cm ³
N _{BA} =5x10 ¹⁷ /cm ³	$N_{BD}=5 \times 10^{17}/cm^3$
N _{CD} =10 ¹⁶ /cm ³	N _{CA} =10 ¹⁶ /cm ³
Area=10µm x 10µm	Area=10µm x 10µm

8.1) Common Collector Amplifier (Using the bipolar models in circuits).

Consider the following circuit:

- a) If $V_{OUT}=2.5V$, what region is the BJT operating in?
- b) Solve for the large signal current exiting the collector, I_{C} .
- c) Determine I_{BIAS} such that $V_{OUT}=2.5V$.
- d) Draw the small signal version of the circuit and find values for all components. For the transistor small signal model only include C_p , r_p , r_0 and the dependent source. Let $n_i^2 = 10^{20}/\text{cm}^3$.
- e) Symbolically solve for the overall small signal voltage gain of the circuit, v_{out}/v_{in} as a function of ? . You can leave your answer in terms of the small signal components. You will want to do a Norton to Thevenin transformation on i_s and R_s to get v_{in} .

- f) Draw the approximate (straight lines only) magnitude Bode plot of voltage gain for this circuit. Use radian/sec for the horizontal axis, not Hertz. Label all important values.
- g) Draw the approximate (straight lines only) phase Bode plot of voltage gain for this circuit. Use radian/sec for the horizontal axis, not Hertz. Label all important values.

8.2) Base Doping (Review of basic physics through examining assumptions)

In this class we are making the assumption that V_{BE} =0.7V for an NPN BJT that has a positive current going from collector to emitter. This is good enough to get a first order feel for what the circuits are doing, however you should understand this is far from exact. For an NPN BJT with N_{ED}=10¹⁹/cm³, W_B=1um and a cross sectional area of 10um by 10um:

a) Determine the doping in the base such that $V_{BE}=0.7V$ and current exiting the emitter is 1mA. Since the doping of the emitter is high, you only need to consider the current from electrons. Let $n_i^2=10^{20}/\text{cm}^3$.

- b) Repeat for 100uA.
- c) Repeat for 10uA.

8.3) Regions of Operation (Review of basic circuits)

Consider the following circuit:

Find V_{BIAS} such that the transistor is at the transition point between saturation and forward active.