Homework Assignment \# 9, Due Wednesday March 21, 2001

The second mid-term exam will be on Friday March 23 from 10:10-11am.
Please try to show up early so we can start on time and give you the full 50 minutes.
Use the following parameters for all BJT devices.

$N P N$	$\mathrm{PNP}=50$
$\beta=100$	$\mathrm{~V}_{\mathrm{EC}-\mathrm{SAT}}=0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{CE}-\mathrm{SA}}=0.1 \mathrm{~V}$	$\mathrm{~V}_{\text {EB }}=0.7 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{A}}=25 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{A}}=20 \mathrm{~V}$	$\mathrm{~W}_{\mathrm{B}}=1 \mu \mathrm{~m}$
$\mathrm{~W}_{\mathrm{B}}=1 \mu \mathrm{~m}$	$\mathrm{~N}_{\mathrm{EA}}=10^{19} / \mathrm{cm}^{3}$
$\mathrm{~N}_{\mathrm{ED}}=10^{19} / \mathrm{cm}^{3}$	$\mathrm{~N}_{\mathrm{BD}}=5 \times 10^{17} / \mathrm{cm}^{3}$
$\mathrm{~N}_{\mathrm{BA}}=5 \times 10^{17} / \mathrm{cm}^{3}$	$\mathrm{~N}_{\mathrm{CA}}=10^{16} / \mathrm{cm}^{3}$
$\mathrm{~N}_{\mathrm{CD}}=10^{16} / \mathrm{cm}^{3}$	Area $=10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$
Area $=10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$	

8.1) Common Collector Amplifier (Using the bipolar models in circuits). Consider the following circuit:

a) If $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$, what region is the BJT operating in?
b) Solve for the large signal current exiting the collector, I_{C}.
c) Determine $\mathrm{I}_{\text {BIAS }}$ such that $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$.
d) Draw the small signal version of the circuit and find values for all components. For the transistor small signal model only include $\mathrm{C}_{\mathrm{p}}, \mathrm{r}_{\mathrm{p}}, \mathrm{r}_{0}$ and the dependent source. Let $\mathrm{n}_{\mathrm{i}}^{2}=10^{20} / \mathrm{cm}^{3}$.
e) Symbolically solve for the overall small signal voltage gain of the circuit, $v_{\text {out }} / v_{\text {in }}$ as a function of?. You can leave your answer in terms of the small signal components. You will want to do a Norton to Thevenin transformation on i_{s} and R_{s} to get $v_{\text {in }}$.
f) Draw the approximate (straight lines only) magnitude Bode plot of voltage gain for this circuit. Use radian/sec for the horizontal axis, not Hertz. Label all important values.
g) Draw the approximate (straight lines only) phase Bode plot of voltage gain for this circuit. Use radian/sec for the horizontal axis, not Hertz. Label all important values.

8.2) Base Doping (Review of basic physics through examining assumptions)

In this class we are making the assumption that $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ for an NPN BJT that has a positive current going from collector to emitter. This is good enough to get a first order feel for what the circuits are doing, however you should understand this is far from exact. For an NPN BJT with $\mathrm{N}_{\mathrm{ED}}=10^{19} / \mathrm{cm}^{3}, \mathrm{~W}_{\mathrm{B}}=1 \mathrm{um}$ and a cross sectional area of 10 um by 10um:
a) Determine the doping in the base such that $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and current exiting the emitter is 1 mA . Since the doping of the emitter is high, you only need to consider the current from electrons. Let $\mathrm{n}_{\mathrm{i}}{ }^{2}=10^{20} / \mathrm{cm}^{3}$.
b) Repeat for 100 uA .
c) Repeat for 10 uA .

8.3) Regions of Operation (Review of basic circuits)

Consider the following circuit:

Find $\mathrm{V}_{\text {BIAS }}$ such that the transistor is at the transition point between saturation and forward active.

