EEl 105 - Spring 2001 - Homework \#9 Solutions by William Holtz
la) $V_{C E}=2.5>V_{C E_{\text {SAT }}}=0.1 \Rightarrow$ not saturation by Ohm's law there is a currant through R_{c} and by KCl this current must come from the collector \therefore not cutoff. Current is exiting collector so not reverse active \Rightarrow forward Active
bb)

$$
\begin{aligned}
& \text { b) Let } Z_{e q}=R_{c}\left\|C_{L}\right\| R_{L}=\frac{1}{\frac{1}{R_{c}}+j \omega C_{L}+\frac{1}{R_{L}}} \\
& Z_{\text {eq }}(\omega=0)=833 \Omega \\
& I_{c}=\frac{V_{\text {ouT }}}{Z_{\text {eq }}(\omega=0)}=\frac{2.5}{833}=3 m A=I_{C}
\end{aligned}
$$

lc)

$$
\begin{aligned}
& I_{B}=\frac{I_{C}}{B}=\frac{5-V_{B E}}{R_{S}}+I_{B I A S} ; I_{B I A S}=\frac{I_{C}}{B}-\frac{5-V_{B E}}{R_{S}}=\frac{3 \times 10^{-3}}{50}-\frac{4,3}{50 \mathrm{~K}} \\
& I_{B I A S}=-26 \mu \mathrm{~A}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& g_{m}=\frac{I_{c}}{V_{t h}}=\frac{3 \times 10^{-3}}{26 \times 10^{-3}}=0.115 \mathrm{~A} / \mathrm{V} \\
& r_{\pi}=\frac{B}{g_{m}}=\frac{50}{0,115}=433 \Omega
\end{aligned}
$$

$\left.\begin{array}{l}\text { ld } \\ \text { cont }\end{array}\right) C_{\pi}=C_{b}+C_{j O E}=g_{m} \frac{\omega_{B}^{2}}{2 D_{n_{B}}}+A \sqrt{\frac{q \varepsilon_{s} N_{A E} N_{D B}}{2 \phi_{B}\left(N_{A E}+N_{D B}\right)}}$

$$
\begin{aligned}
& \mu_{n B}=450 \mathrm{~cm}^{2} / V_{s} \quad D_{n B}=\mu_{n B} V_{+h}=11.7 \mathrm{~cm}^{2} / \mathrm{s} \\
& \phi_{B}=60 \log \left(\frac{10^{19}}{10^{10}}\right)+60 \log \left(\frac{5 \times 11^{17}}{10^{10}}\right)=1.00 \mathrm{~V} \\
& C_{\pi}=0,115 \frac{\left(10^{-4}\right)^{2}}{2 \times 11.7}+\left(10^{-3}\right)^{2} \sqrt{\frac{1.6 \times 10^{-19} \times 1.035 \times 10^{-12} \times 10^{19} \times 5 \times 10^{171}}{2 \times 1 \times\left(10^{19}+5 \times 10^{17}\right)}} \\
& C_{\pi}=49 p F \\
& z_{e q}=\frac{1}{1.2 \times 10^{-3}+j \omega 50 \times 10^{-12}} \Omega
\end{aligned}
$$

le)

Let $z_{\pi}=C_{\pi} \| r_{\pi}$

$$
\begin{aligned}
& N_{\pi}=i_{s}\left(\frac{R_{s} z_{\pi}}{R_{s}+z_{\pi}}\right) ; N_{\text {ont }}=g_{m} N \pi\left(\frac{r_{0} z_{e l}}{r_{0}+z_{c l}}\right) \\
& V_{\pi}=N_{\text {in }}\left(\frac{z_{\pi}}{R_{s}+z_{\pi}}\right) ; N_{\text {ont }}=g_{m} N \operatorname{Nin}\left(\frac{z_{\pi}}{R_{s}+z_{\pi}}\right)\left(\frac{r_{0} z_{e l}}{r_{0}+z_{e l}}\right)
\end{aligned}
$$

$$
\frac{v_{\text {ont }}}{v_{\text {in }}}=g_{m}\left(\frac{z_{\pi}}{R_{s}+z_{\pi}}\right)\left(\frac{r_{0} z_{e q}}{r_{0}+z_{e q}}\right)
$$

Where $Z_{\pi}=C_{\pi} \| / r_{\pi}$ and $Z_{e q}=R_{c}\left\|C_{L}\right\| R_{L}$

If) expand out equation from part so that the poles and zeros are easy to see

$$
\begin{aligned}
& \frac{z_{\pi}}{R_{S}+z_{\pi}}=\frac{\left(\frac{r_{\pi}}{1+j \omega r_{\pi} C \pi}\right)}{\left(R_{S}+\frac{r_{\pi}}{1+j \omega r_{\pi} C_{\pi}}\right)}=\frac{r_{\pi}}{R_{S}+r_{\pi}+j \omega R_{S} r_{\pi} C_{\pi}} \\
& \frac{r_{0} z_{e q}}{r_{0}+z_{e}}=R_{C} \| R_{L}\left|/ r_{0}\right| / C_{L}=\frac{1}{R_{C}+\frac{1}{R_{L}}+\frac{1}{r_{0}}+j \omega C_{L}} \\
& =\frac{R_{C} R_{L} r_{0}}{R_{L} r_{0}+R_{C} r_{0}+R_{C} R_{L}+j \omega R_{C} R_{L} r_{0} C_{L}}
\end{aligned}
$$

$$
\text { Poles at } \frac{1}{21 \times 10^{-9}}=47,6 \mathrm{Mrad} / \mathrm{s}
$$

$$
\text { and } \frac{1}{8.6 \times 10^{-9}}=116 \mathrm{Mrod} / \mathrm{s}^{1 / 3.79-8826.4 \mathrm{Mrad} / \mathrm{s}}
$$

$$
20 \log (0,17)=-15,4 d B
$$

$$
\begin{aligned}
& \frac{\text { Nous }}{v_{\text {in }}}=\frac{\left[\frac{g_{m} r_{\pi} R_{C} R_{L} r_{0}}{\left(R_{S}+r_{\pi}\right)\left(R_{L} r_{0}+R_{c} r_{0}+R_{C} R_{L}\right)}\right]}{\left[1+\frac{j \omega R_{S} r_{\pi} C \pi}{R_{S}+r_{\pi}}\right]\left[1+\frac{j \omega R_{C} R_{L} r_{0} C_{L}}{R_{L} r_{0}+R_{C} r_{0}+R_{C} R_{L}}\right]} \\
& \text { due to updated } r \text { _0 value... } \\
& \frac{\text { ont }}{N_{\text {in }}}=\frac{0.17}{\left(1+j \omega 21 \times 10^{-9}\right)\left(1+j \omega 8.6 \times 10^{-9}\right)^{\text {and the }} \text { 8.6e-9 gets replaced with }}
\end{aligned}
$$

$\left.\begin{array}{c}\text { If } \\ \text { cont }\end{array}\right)\left|\frac{\text { out }}{\operatorname{Vin}}\right|_{d B}$

$$
-15.4-20 \log \left(\frac{116}{47,6}\right)=-23,1 d B^{-.252-2010 g(47.6126 .4)=-.64 d B}
$$

$$
<\frac{V_{\text {out }}}{V_{\text {in }}}
$$

$$
\begin{aligned}
& 0-45 \log \left(\frac{11.6}{4.76}\right)=-17.4^{\circ} \quad-45 \log (4.76 / 2.64)=-11.52 \\
& -17.4-90 \log \left(\frac{476}{11.6}\right)=-162.6^{0-11.52-90 \log (26444.76)=-168.5} \\
& -162^{0}-45 \log \left(\frac{1.16}{0.476}\right)=-180^{-168.5 \cdot 45 \log (4761264)=-180}
\end{aligned}
$$

Ra) $I_{D}=q n_{i}^{2} A\left(\frac{D_{n B}}{N_{A B} W_{B}}\right)\left(e^{V_{B E} / V_{t h}}-1\right)$
$D_{n B}$ is a function of $N_{A B}$, so solve for
$\frac{D_{n B}}{N_{A B}}$ then use trial +error to find avalue

$$
\begin{aligned}
& \frac{I_{D} W_{B}}{q^{n} ; 2 A\left(e^{U_{B E} / L_{n+n}}-1\right)}=\frac{D_{n B}}{N_{A B}} \\
& \frac{10^{-3} \times 10^{-4}}{1,6 \times 10^{-19} 10^{20}\left(10^{-3}\right)^{2}\left(e^{0,2 / 0,026}-1\right)}=12.69 \times 10^{-15}=\frac{D_{n B}}{N_{A B}} \\
& \text { Guess } D_{n B}=10 \Rightarrow N_{A B} \sim 10^{15} \Rightarrow \mu_{n}=1375 \mathrm{~cm}^{2} / \mathrm{Vs}
\end{aligned}
$$

need larger try $N_{A B}=10^{16} \Rightarrow \mu_{n}=1200 \mathrm{~cm}^{2} / \mathrm{Vs}_{s}$

$$
N_{A B} \approx 3 \times 10^{15} / \mathrm{cm}^{3}
$$

2b) $1.269 \times 10^{-15}=\frac{D_{n B}}{N_{A B}} \quad N_{A B} \approx 2.3 \times 10^{16} / \mathrm{cm}^{3}$
2c) $1,269 \times 10^{-16}=\frac{D_{n B}}{N_{A B}} \quad N_{A B} \approx 1.7 \times 10^{17} / \mathrm{cm}^{3}$
3) Saturated $\Rightarrow V_{C E}=V_{C E_{S A T}}=0.1 \mathrm{~V}$

$$
I_{c}=\frac{5-0.1}{40 \times 10^{3}}=123 \mu \mathrm{~A}
$$

forward active $\Rightarrow I_{B}=\frac{I_{C}}{B}$

$$
\begin{aligned}
& I_{B}=\frac{123 \mu \mathrm{~A}}{100}=1.23 \mu \mathrm{~A} \\
& V_{B I A S}-I_{B} 10 \mathrm{~K}-V_{B E}=0
\end{aligned}
$$

$$
U_{B I A S}=U_{B E}+I_{B} 10 \mathrm{~K}=0.7+\left(1.23 \times 10^{-6}\right)\left(10^{4}\right)=\frac{0.712 \mathrm{~V}=U_{B I A S}}{5 / 5}
$$

