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Context

In the last lecture:
– We discussed analyzing circuits with a sinusoidal input, 

(in the frequency domain, a single frequency at a time)
– How to simplify our notation with Phasors
– and introduced Bode plots

In this lecture, we will:
– Review how get a transfer function for a circuit
– How to put the transfer function into a standard form
– Find why magnitude and phase plots are a useful form.
– How to create an approximate Bode plot for a circuit.
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Bode plots
Since the majority of this lecture is on how to create 

approximate Bode plots by hand, it is fair to ask 
why we should do so when it can be done quickly 
on a computer. 

The answer is that a few features of transfer functions 
that we will exploit for our graphs will appear often 
in different contexts, and design of a circuit for a 
particular purpose will often entail putting together 
several of these features, and the language of the 
circuit designer will use these constructs: poles, 
zeros, resonances, etc.
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Find the Transfer Function
Excite a system with an input voltage  vin
Define the output voltage vany to be any node 
voltage (branch current)
For a complex exponential input, the “transfer 
function” from input to output( or any voltage or 
current) can then be written:

This is found by using phasor notation to change 
circuits into networks of complex resistors, then 
applying Kirchoff’s laws repeatedly
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Bode Plot Overview

Then put the transfer function into standard form:

Each of the frequencies:               correspond to 
time constants which are features of the circuit, and 
are called break frequencies.
Those that appear in the numerator are called zeros, 
and those that appear in the denominator are called 
poles.
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Breakpoints

Since the transfer function will always result in a 
real voltage, the following features can appear:
– Real zeros
– Real poles
– Conjugate pairs of zeros
– Conjugate pairs of holes

Each of these can appear in multiple orders (two poles 
at the same frequency, for example)

Additional features of the function are the constant 
G0, and the order of the overall term →K
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Adding them up

If we take the log magnitude of each factor (as in 
db), they add to find the total magnitude.
The phase angle adds as well, each factor 
contributes to the overall phase change.
So we just catalog each of the features, and then 
add their magnitudes (in db) or contributions to the 
phase angles
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Summary of Individual Factors 

Simple Pole:

Simple Zero:

DC Zero:

DC Pole:
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Example

Consider the following transfer function

Break frequencies: invert time constants
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Magnitude

Recall log of products is sum of logs

Plot each factor separately and add them 
graphically
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Phase

Since

Plot each factor separately and add them 
graphically

)1)(1(
)1(10)(
31

2
5

ωτωτ
ωτωω
jj

jjjH
++
+

∠=∠
−

baba ∠+∠=⋅∠

}1{}1{

}1{}
10

{)(

31

2
5

ω
ω

ω
ω

ω
ωωω

jj

jjjH

+∠−+∠−

+∠+∠=∠

Department of EECS University of California, Berkeley

EECS 105 Spring 2004, Lecture 4 Prof. J. S. Smith

Magnitude Bode Plot: DC Zero
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Phase Bode Plot: DC Zero
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Magnitude Bode Plot: Add First Pole
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Phase Bode Plot: Add First Pole
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Magnitude Bode Plot: Add 2nd Zero
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Phase Bode Plot: Add 2nd Zero
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Magnitude Bode Plot: Add 2nd Pole
80

20

60

40

-20

-60

-80

-40

104 105 106 107 108 109 1010 1011
ω

dB
1010

1

1
ωj+

Grad/s103 =ω



10

Department of EECS University of California, Berkeley

EECS 105 Spring 2004, Lecture 4 Prof. J. S. Smith

Phase Bode Plot: Add 2nd Pole
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Comparison to “Actual” Mag Plot
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Comparison to “Actual” Phase Plot
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Second Order Transfer Function

The series resonant circuit is one of the most 
important elementary circuits:

The physics describes not only physical LCR 
circuits, but also approximates mechanical 
resonance (mass-spring, pendulum, molecular 
resonance, microwave cavities, transmission lines, 
buildings, bridges, …) 
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Series LCR Analysis

With phasor analysis, this circuit is readily 
analyzed 
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Second Order Transfer Function
So we have:

To find the poles/zeros, let’s put the H in canonical 
form:

One zero at DC frequency can’t conduct DC due 
to capacitor
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Poles of 2nd Order Transfer Function

Denominator is a quadratic polynomial:
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Finding the poles…

Let’s factor the denominator:

Poles are complex conjugate frequencies
The Q parameter is called the 
“quality-factor” or Q-factor
This parameters is an important
parameter:

Re

Im

0)( 2
0

02 =++ ωωωω
Q

jj

22 −±−=−±−=
Q

j
QQQ 4

11
242 0

02
0

2
00 ωωωωωω

∞⎯⎯ →⎯ →0RQ



14

Department of EECS University of California, Berkeley

EECS 105 Spring 2004, Lecture 4 Prof. J. S. Smith

Resonance without Loss

The transfer function can parameterized in terms of 
loss.  First, take the lossless case, R=0:

When the circuit is lossless, the poles are at real
frequencies, so the transfer function blows up!
At this resonance frequency, the circuit has zero 
imaginary impedance
Even if we set the source equal to zero, the circuit 
can have a steady-state response 
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Magnitude Response

How strongly peaked the response is depends on Q
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Get to know your logs!

Engineers are very conservative.  A “margin” of 
3dB is a factor of 2 (power)!
Knowing a few logs by memory can help you 
calculate logs of different ratios by employing 
properties of log.  For instance, knowing that the 
ratio of 2 is 3 dB, what’s the ratio of 4?

dB ratio dB ratio
-20 0.100 20 10.000
-10 0.316 10 3.162

-5 0.562 5 1.778
-3 0.708 3 1.413
-2 0.794 2 1.259
-1 0.891 1 1.122


