

1

Prof. J. S. Smith

Find the Transfer Function

• Excite a system with an input voltage v_{in}

EECS 105 Spring 2004, Lecture 4

Department of EECS

- Define the output voltage *v*_{any} to be any node voltage (branch current)
- For a complex exponential input, the "transfer function" from input to output(or any voltage or current) can then be written:

$$H(\omega) = \frac{n_1 + n_2 j\omega + n_3 (j\omega)^2 + \cdots}{d_1 + d_2 j\omega + d_3 (j\omega)^2 + \cdots}$$

This is found by using phasor notation to change circuits into networks of complex resistors, then applying Kirchoff's laws repeatedly

Bode Plot Overview

EECS 105 Spring 2004, Lecture 4

Department of EECS

Then put the transfer function into standard form: •

$$H(\omega) = G_0(j\omega)^K \frac{(1+j\frac{\omega}{\omega_{z1}})(1+j\frac{\omega}{\omega_{z2}})\cdots(1+j\frac{\omega}{\omega_{z3}})}{(1+j\frac{\omega}{\omega_{p1}})(1+j\frac{\omega}{\omega_{p2}})\cdots(1+j\frac{\omega}{\omega_{p3}})}$$

- Each of the frequencies: $\omega_i = \frac{1}{2}$ correspond to time constants which are features of the circuit, and are called break frequencies.
- Those that appear in the numerator are called zeros, and those that appear in the denominator are called poles.

EECS 105 S	Spring 2004, Lecture 4					Prof. J. S. S	Smith		
Summary of Individual Factors									
	• Simple Pole: $\left(1+j\frac{\omega}{\omega_{pn}}\right)^{-1}$	0 <u>dB</u>	ω=	$= \omega_n$	@=	-90	•		
	• Simple Zero: $1+j\frac{\omega}{\omega_m}$	0 d <u>B</u>		e in db		+90	Phase angle		
	• DC Zero: $j\frac{\omega}{\omega_0}$	0 d <u>B</u>		Magnitud		+90	Contribution to		
	• DC Pole: $\overline{j\frac{\omega}{\beta}}$	0 d <u>B</u>			Univer	- 90	keley		

Poles of 2nd Order Transfer Function

• Denominator is a quadratic polynomial:

$$H(j\omega) = \frac{V_0}{V_s} = \frac{j\omega CR}{1 - \omega^2 LC + j\omega RC} = \frac{j\omega \frac{R}{L}}{\frac{1}{LC} + (j\omega)^2 + j\omega \frac{R}{L}}$$

$$H(j\omega) = \frac{L}{\omega_0^2 + (j\omega)^2 + j\omega\frac{R}{L}} \qquad \omega_0^2 \equiv \frac{1}{LC}$$

$$H(j\omega) = \frac{j\frac{\omega\omega_0}{Q}}{\omega_0^2 + (j\omega)^2 + j\frac{\omega\omega_0}{Q}} \qquad \qquad Q \equiv \frac{\omega_0 L}{R}$$

Department of EECS

EECS 105 Spring 2004, Lecture 4

Prof. J. S.	Smith
-------------	-------

Get to know your logs!

dB	ratio		dB	ratio
-20	0.100		20	10.000
-10	0.316		10	3.162
-5	0.562		5	1.778
-3	0.708		3	1.413
-2	0.794		2	1.259
-1	0.891		1	1.122

- Engineers are very conservative. A "margin" of 3dB is a factor of 2 (power)!
- Knowing a few logs by memory can help you calculate logs of different ratios by employing properties of log. For instance, knowing that the ratio of 2 is 3 dB, what's the ratio of 4?

Department of EECS

EECS 105 Spring 2004, Lecture 4