Lecture 10

OUTLINE

- BJT Amplifiers (3)
 - Emitter follower (Common-collector amplifier)
 - Analysis of emitter follower core
 - Impact of source resistance
 - Impact of Early effect
 - Emitter follower with biasing

Reading: Chapter 5.3.3-5.4

EE105 Spring 2008

Lecture 10, Slide 1

Prof. Wu, UC Berkeley

Emitter Follower Core

- When the input is increased by ΔV , output is also increased by an amount that is less than ΔV due to the increase in collector current and hence the increase in potential drop across R_E .
- However the absolute values of input and output differ by a $V_{\text{BE}}.$

EE105 Spring 2008

Lecture 10, Slide 3

Prof. Wu, UC Berkeley

Small-Signal Model of Emitter Follower

 As shown above, the voltage gain is less than unity and positive.

EE105 Spring 2008 Lecture 10, Slide 4 Prof. Wu, UC Berkeley

Unity-Gain Emitter Follower

 The voltage gain is unity because a constant collector current (= I₁) results in a constant V_{BE}, and hence Vout follows Vin exactly.

EE105 Spring 2008

Lecture 10, Slide 5

Prof. Wu, UC Berkeley

Analysis of Emitter Follower as a Voltage Divider

EE105 Fall 2007

Emitter Follower as Buffer I κΩ Rc Vcc I κΩ Rc Vcc I κΩ Rc Vcc Since the emitter follower increases the load resistance to a much higher value, it is suited as a buffer between a CE stage and a heavy load resistance to alleviate the problem of gain degradation.

EE105 Fall 2007

Emitter Follower with Biasing

- A biasing technique similar to that of CE stage can be used for the emitter follower.
- Also, V_b can be close to V_{cc} because the collector is also at V_{cc} .

EE105 Spring 2008

Lecture 10, Slide 13

Prof. Wu, UC Berkeley

Supply-Independent Biasing

 By putting a constant current source at the emitter, the bias current, V_{BE}, and I_BR_B are fixed regardless of the supply value.

EE105 Spring 2008

Lecture 10, Slide 14

Summary of Amplifier Topologies

- The three amplifier topologies studied so far have different properties and are used on different occasions.
- CE and CB have voltage gain with magnitude greater than one, while follower's voltage gain is at most one.

EE105 Spring 2008

Lecture 10, Slide 15

Prof. Wu, UC Berkeley

Amplifier Example I

 The keys in solving this problem are recognizing the AC ground between R₁ and R₂, and Thevenin transformation of the input network.

EE105 Spring 2008

Lecture 10, Slide 16

Prof. Wu, UC Berkeley

Prof. Wu, UC Berkeley

Amplifier Example II

 Again, AC ground/short and Thevenin transformation are needed to transform the complex circuit into a simple stage with emitter degeneration.

EE105 Spring 2008

Lecture 10, Slide 17

Prof. Wu, UC Berkeley

Amplifier Example III

• The key for solving this problem is first identifying $R_{\rm eq}$, which is the impedance seen at the emitter of Q_2 in parallel with the infinite output impedance of an ideal current source. Second, use the equations for degenerated CE stage with RE replaced by $R_{\rm eq}$.

EE105 Spring 2008

Lecture 10, Slide 18

Prof. Wu, UC Berkeley

Amplifier Example IV

- The key for solving this problem is recognizing that CB at frequency of interest shorts out R2 and provide a ground for R1.
- ${\rm R}_{\rm 1}$ appears in parallel with RC and the circuit simplifies to a simple

EE105 Spring 2008

Lecture 10, Slide 19

Prof. Wu, UC Berkeley

Amplifier Example V

• The key for solving this problem is recognizing the equivalent base resistance of $\mathbf{Q}_{\mathbf{1}}$ is the parallel connection of RE and the impedance seen at the emitter of Q₂.

EE105 Spring 2008 Lecture 10, Slide 20

Amplifier Example VI

The key in solving this problem is recognizing a DC supply is actually an AC ground and using Thevenin transformation to simplify the circuit into an emitter follower.

EE105 Spring 2008 Lecture 10, Slide 21 Prof. Wu, UC Berkeley **Amplifier Example VII**

Impedances seen at the emitter of Q₁ and Q₂ can be lumped with ${\rm R}_{\rm C}$ and ${\rm R}_{\rm E}$, respectively, to form the equivalent emitter and collector impedances.

EE105 Spring 2008 Lecture 10, Slide 22 Prof. Wu. UC Berkeley

EE105 Fall 2007 4