Lecture 11

OUTLINE

Cascode Stage

Reading: Chapter 9.1

Ideal Current Source

An ideal current source has infinite output impedance.

How can we increase the output impedance of a BJT that is used as a current source?

EE105 Spring 2008 Lecture 11, Slide 2 Prof. Wu, UC Berkeley

Boosting the Output Impedance

- Recall that emitter degeneration boosts the impedance seen looking into the collector.
 - This improves the gain of the CE or CB amplifier. However, headroom is reduced.

$$R_{out} = \left[1 + g_m(R_E \parallel r_\pi)\right]r_O + R_E \parallel r_\pi$$

EE105 Spring 2008 Lecture 11, Slide 3 Prof. Wu, UC Berkeley

Cascode Stage

 In order to relax the trade-off between output impedance and voltage headroom, we can use a transistor instead of a degeneration resistor:

• V_{CE} for Q_2 can be as low as ~ 0.4V ("soft saturation")

EE105 Spring 2008 Lecture 11, Slide 4 Prof. Wu, UC Berkeley

Maximum Bipolar Cascode Output Impedance

$$R_{out, \text{max}} \approx g_{m1} r_{01} r_{\pi 1}$$

 $R_{out, \text{max}} \approx \beta_1 r_{01}$

• The maximum output impedance of a bipolar cascode is bounded by the ever-present r_{π} between emitter and ground of Q_1 .

EE105 Spring 2008 Lecture 11, Slide 5 Prof. Wu, UC Berkeley

PNP Cascode Stage

$$R_{out} = [1 + g_m(r_{02} || r_{\pi 1})]r_{01} + r_{02} || r_{\pi 1}$$

$$R_{out} \approx g_{m1}r_{01}(r_{02} || r_{\pi 1})$$

EE105 Spring 2008 Lecture 11, Slide 6 Prof. Wu, UC Berkeley

False Cascodes

$$V_{b1} = \begin{bmatrix} V_{b1} & V_{b1} & V_{b2} &$$

• When the emitter of Q_1 is connected to the emitter of Q_2 , it's no longer a cascode since Q_2 becomes a diodeconnected device instead of a current source.

EE105 Spring 2008 Lecture 11, Slide 7 Prof. Wu, UC Berkeley

Short-Circuit Transconductance

 The short-circuit transconductance of a circuit is a measure of its strength in converting an input voltage signal into an output current signal.

EE105 Spring 2008 Lecture 11, Slide 8 Prof. Wu, UC Berkeley

Voltage Gain of a Linear Circuit

 By representing a linear circuit with its Norton equivalent, the relationship between V_{out} and V_{in} can be expressed by the product of G_m and R_{out}.

(b)

Example: Voltage Gain

$$G_m \equiv \frac{i_{out}}{v_{in}}\bigg|_{v_{out}=0} = g_{m1}$$

$$v_{\text{in}} \circ \qquad \qquad \downarrow \qquad \qquad$$

$$R_{out} \equiv \frac{v_x}{i_x} = r_{o1}$$

$$A_{v} = -g_{m1}r_{01}$$

Comparison of CE and Cascode Stages

• Since the output impedance of the cascode is higher than that of a CE stage, its voltage gain is also higher.

$$A_{v} = -g_{m1}r_{O1} = -\frac{V_{A}}{V_{T}} \qquad A_{v} \approx -g_{m1}r_{O2}g_{m2}(r_{O1}||r_{\pi 2})$$

EE105 Spring 2008 Lecture 11, Slide 11 Prof. Wu, UC Berkeley

Voltage Gain of Cascode Amplifier

• Since r_0 is much larger than $1/g_m$, most of $I_{C,Q1}$ flows into diode-connected Q_2 . Using R_{out} as before, A_V is easily calculated.

EE105 Spring 2008 Lecture 11, Slide 12 Prof. Wu, UC Berkeley

Alternate View of Cascode Amplifier

 A bipolar cascode amplifier is also a CE stage in series with a CB stage.

EE105 Spring 2008 Lecture 11, Slide 13 Prof. Wu, UC Berkeley

Practical Cascode Stage

 Since no current source can be ideal, the output impedance drops.

EE105 Spring 2008 Lecture 11, Slide 14 Prof. Wu, UC Berkeley

Improved Cascode Stage

 In order to preserve the high output impedance, a cascode PNP current source is used.

EE105 Spring 2008 Lecture 11, Slide 15 Prof. Wu, UC Berkeley