Lecture 11

OUTLINE

Cascode Stage

Reading: Chapter 9.1

EE105 Spring 2008

Lecture 11, Slide 1

Prof. Wu, UC Berkeley

Ideal Current Source

Circuit Symbol

I-V Characteristic

Equivalent Circuit

• An ideal current source has infinite output impedance.

How can we increase the output impedance of a BJT that is used as a current source?

EE105 Spring 2008

Lecture 11, Slide 2

Prof. Wu, UC Berkeley

EE105 Fall 2007

Boosting the Output Impedance

- Recall that emitter degeneration boosts the impedance seen looking into the collector.
 - This improves the gain of the CE or CB amplifier. However, headroom is reduced.

$$R_{out} = \left[1 + g_m(R_E \parallel r_\pi)\right]r_O + R_E \parallel r_\pi$$

EE105 Spring 2008

Lecture 11. Slide 3

Prof. Wu. UC Berkelev

Cascode Stage

• In order to relax the trade-off between output impedance and voltage headroom, we can use a transistor instead of a degeneration resistor:

$$V_{\text{b1}} = \begin{bmatrix} R_{\text{out}} \\ R_{\text{out}} \end{bmatrix} = \begin{bmatrix} 1 + g_m(r_{O2} \parallel r_{\pi 1}) \end{bmatrix} r_{O1} + r_{O2} \parallel r_{\pi 1}$$

$$V_{\text{b2}} = \begin{bmatrix} R_{\text{out}} \\ R_{\text{$$

 $V_{\rm CE}$ for Q_2 can be as low as ~ 0.4V ("soft saturation")

EE105 Spring 2008

Lecture 11, Slide 4

Prof. Wu, UC Berkeley

EE105 Fall 2007 2

Maximum Bipolar Cascode Output Impedance

$$R_{out, \max} \approx g_{m1} r_{01} r_{\pi 1}$$

 $R_{out, \max} \approx \beta_1 r_{01}$

• The maximum output impedance of a bipolar cascode is bounded by the ever-present r_{π} between emitter and ground of Q_1 .

EE105 Spring 2008

Lecture 11, Slide 5

Prof. Wu, UC Berkeley

PNP Cascode Stage

$$V_{b2}$$
 Q_2
 Q_1
 Q_{b1}
 Q_{a1}
 Q_{b2}

$$\begin{aligned} R_{out} &= [1 + g_m(r_{02} \parallel r_{\pi 1})] r_{01} + r_{02} \parallel r_{\pi 1} \\ R_{out} &\approx g_{m1} r_{01} (r_{02} \parallel r_{\pi 1}) \end{aligned}$$

EE105 Spring 2008

Lecture 11, Slide 6

Prof. Wu, UC Berkeley

EE105 Fall 2007

3

False Cascodes

 When the emitter of Q₁ is connected to the emitter of Q₂, it's no longer a cascode since Q₂ becomes a diodeconnected device instead of a current source.

EE105 Spring 2008

Lecture 11, Slide 7

Prof. Wu, UC Berkeley

Short-Circuit Transconductance

• The **short-circuit transconductance** of a circuit is a measure of its strength in converting an input voltage signal into an output current signal.

EE105 Spring 2008

Lecture 11, Slide 8

Prof. Wu, UC Berkeley

Voltage Gain of a Linear Circuit

• By representing a linear circuit with its Norton equivalent, the relationship between $V_{\rm out}$ and $V_{\rm in}$ can be expressed by the product of $G_{\rm m}$ and $R_{\rm out}$.

EE105 Fall 2007 5

Comparison of CE and Cascode Stages

 Since the output impedance of the cascode is higher than that of a CE stage, its voltage gain is also higher.

$$A_{v} = -g_{m1}r_{O1} = -\frac{V_{A}}{V_{T}}$$

$$A_{v} \approx -g_{m1}r_{O2}g_{m2}(r_{O1}||r_{\pi2})$$

EE105 Spring 2008

Lecture 11. Slide 11

Prof. Wu. UC Berkeley

Voltage Gain of Cascode Amplifier

• Since r_0 is much larger than $1/g_m$, most of $I_{C.01}$ flows into diode-connected Q_2 . Using R_{out} as before, A_V is easily calculated.

EE105 Spring 2008

Lecture 11, Slide 12

Prof. Wu, UC Berkeley

Alternate View of Cascode Amplifier

 A bipolar cascode amplifier is also a CE stage in series with a CB stage.

EE105 Spring 2008

Lecture 11, Slide 13

Prof. Wu, UC Berkeley

Practical Cascode Stage

$$R_{out} \approx r_{O3} \parallel g_{m2} r_{O2} (r_{O1} \parallel r_{\pi 2})$$

 Since no current source can be ideal, the output impedance drops.

EE105 Spring 2008

Lecture 11, Slide 14

Prof. Wu, UC Berkeley

EE105 Fall 2007 7

Improved Cascode Stage

• In order to preserve the high output impedance, a cascode PNP current source is used.

EE105 Spring 2008

Lecture 11, Slide 15

Prof. Wu, UC Berkeley

EE105 Fall 2007