Lecture 11

OUTLINE

· Cascode Stage

Reading: Chapter 9.1

Prof. Wu, UC Berkeley

EE105 Spring 2008 Lecture 11, Slide 1

Ideal Current Source

Circuit Symbol I-V Characteristic **Equivalent Circuit**

• An ideal current source has infinite output impedance.

How can we increase the output impedance of a BJT that is used as a current source?

EE105 Spring 2008 Lecture 11, Slide 2

Boosting the Output Impedance

- Recall that emitter degeneration boosts the impedance seen looking into the collector.
 - This improves the gain of the CE or CB amplifier. However,

EE105 Spring 2008

Cascode Stage

• In order to relax the trade-off between output impedance and voltage headroom, we can use a transistor instead of a degeneration resistor:

$$V_{b1}$$
 Q_{1} $R_{out} = [1 + g_{m}(r_{O2} \parallel r_{\pi 1})]r_{O1} + r_{O2} \parallel r_{\pi 1}$
 $R_{out} \approx g_{m1}r_{O1}(r_{O2} \parallel r_{\pi 1})$
 $I_{C2} = I_{E1} \cong I_{C2} \text{ if } \beta_{1} >> 1$
 $V_{c2} = I_{C2} \text{ if } \beta_{1} >> 1$

• V_{CF} for Q_2 can be as low as ~ 0.4V ("soft saturation")

EE105 Spring 2008 Lecture 11, Slide 4 Prof. Wu, UC Berkeley

EE105 Fall 2007 1

Maximum Bipolar Cascode Output Impedance

• The maximum output impedance of a bipolar cascode is bounded by the ever-present r_π between emitter and ground of Q_1 .

EE105 Spring 2008 Lecture 11, Slide 5 Prof. Wu, UC Berkeley

PNP Cascode Stage $V_{b2} \leftarrow V_{cc}$ $V_{b1} \leftarrow V_{cc}$ $V_{b1} \leftarrow V_{cc}$ R_{out} $R_{out} = [1 + g_m(r_{02} \parallel r_{\pi 1})]r_{01} + r_{02} \parallel r_{\pi 1}$ $R_{out} \approx g_{m1}r_{01}(r_{02} \parallel r_{\pi 1})$ EE105 Spring 2008 Lecture 11, Slide 6 Prof. Wu, UC Berkeley

False Cascodes

 When the emitter of Q₁ is connected to the emitter of Q₂, it's no longer a cascode since Q₂ becomes a diodeconnected device instead of a current source.

EE105 Spring 2008 Lecture 11, Slide 7 Prof. Wu, UC Berkeley

Short-Circuit Transconductance

 The short-circuit transconductance of a circuit is a measure of its strength in converting an input voltage signal into an output current signal.

EE105 Fall 2007 2

Comparison of CE and Cascode Stages

• Since the output impedance of the cascode is higher than that of a CE stage, its voltage gain is also higher.

Voltage Gain of Cascode Amplifier

• Since r_0 is much larger than $1/g_{\rm m}$, most of $I_{\rm C,Q1}$ flows into diode-connected Q_2 . Using $R_{\rm out}$ as before, $A_{\rm V}$ is easily calculated.

EE105 Fall 2007

Alternate View of Cascode Amplifier

• A bipolar cascode amplifier is also a CE stage in series with a CB stage.

EE105 Spring 2008

Lecture 11, Slide 13

Prof. Wu. UC Berkeley

Practical Cascode Stage

$$V_{b2}$$
 Q_3
 V_{out}
 V_{b1}
 Q_2
 V_{b1}
 Q_2
 V_{in}
 Q_1
 Q_1
 Q_1
 Q_2
 Q_3
 Q_4
 Q_5
 Q_6
 Q_7
 Q_1

 $R_{out}\approx r_{O3}\parallel g_{m2}r_{O2}(r_{O1}\parallel r_{\pi2})$ • Since no current source can be ideal, the output

Lecture 11, Slide 14

impedance drops.

EE105 Spring 2008

Improved Cascode Stage

• In order to preserve the high output impedance, a cascode PNP current source is used.

EE105 Spring 2008

Lecture 11, Slide 15

Prof. Wu, UC Berkeley

EE105 Fall 2007 4