Lecture 11

OUTLINE

· Cascode Stage

Reading: Chapter 9.1

EE105 Spring 2008

Lecture 11, Slide 1

Prof. Wu. UC Berkeley

Ideal Current Source

Circuit Symbol

I-V Characteristic

Equivalent Circuit

• An ideal current source has infinite output impedance.

How can we increase the output impedance of a BJT that is used as a current source?

EE105 Spring 2008

Lecture 11, Slide 2

Prof. Wu, UC Berkeley

Boosting the Output Impedance

- Recall that emitter degeneration boosts the impedance seen looking into the collector.
 - This improves the gain of the CE or CB amplifier. However, headroom is reduced.

$$R_{out} = [1 + g_{m}(R_{E} || r_{\pi})]r_{O} + R_{E} || r_{\pi}$$

EE105 Spring 2008

Prof Wu LIC Berkeley

Cascode Stage

• In order to relax the trade-off between output impedance and voltage headroom, we can use a transistor instead of a degeneration resistor:

V_{CF} for Q₂ can be as low as ~ 0.4V ("soft saturation")

EE105 Spring 2008

Lecture 11, Slide 4

Prof Wu LIC Berkeley

Maximum Bipolar Cascode Output Impedance

$$R_{out, \max} \approx g_{m1} r_{01} r_{\pi 1}$$

 $R_{out, \max} \approx \beta_1 r_{01}$

• The maximum output impedance of a bipolar cascode is bounded by the ever-present r_{π} between emitter and ground of Q₁.

EE105 Spring 2008

Lecture 11, Slide 5

Prof. Wu, UC Berkeley

PNP Cascode Stage

$$R_{out} = [1 + g_m(r_{02} || r_{\pi 1})]r_{01} + r_{02} || r_{\pi 1} R_{out} \approx g_{m1}r_{01}(r_{02} || r_{\pi 1})$$

EE105 Spring 2008

Lecture 11, Slide 6

Prof. Wu, UC Berkeley

False Cascodes

 When the emitter of Q₁ is connected to the emitter of Q₂, it's no longer a cascode since Q₂ becomes a diodeconnected device instead of a current source.

EE105 Spring 2008 Lecture 11, Slide 7 Prof. Wu, UC B

Short-Circuit Transconductance

 The short-circuit transconductance of a circuit is a measure of its strength in converting an input voltage signal into an output current signal.

Voltage Gain of a Linear Circuit

 By representing a linear circuit with its Norton equivalent, the relationship between V_{out} and V_{in} can be expressed by the product of G_m and R_{out}.

Example: Voltage Gain

Comparison of CE and Cascode Stages

• Since the output impedance of the cascode is higher than that of a CE stage, its voltage gain is also higher.

Voltage Gain of Cascode Amplifier

• Since r_0 is much larger than $1/g_{\rm m}$, most of $l_{\rm C,Q1}$ flows into diode-connected Q_2 . Using $R_{\rm out}$ as before, $A_{\rm V}$ is easily calculated.

EE105 Fall 2007 2

Alternate View of Cascode Amplifier

• A bipolar cascode amplifier is also a CE stage in series with a CB stage.

EE105 Spring 2008

Lecture 11, Slide 13

Prof. Wu, UC Berkeley

Practical Cascode Stage

 $R_{out} \approx r_{O3} \parallel g_{m2} r_{O2} (r_{O1} \parallel r_{\pi 2})$

• Since no current source can be ideal, the output impedance drops.

EE105 Spring 2008

Lecture 11, Slide 14

Prof. Wu, UC Berkeley

Improved Cascode Stage

$$V_{b3} - V_{cc}$$

$$V_{b2} - Q_{3}$$

$$V_{b1} - Q_{2}$$

$$V_{b1} - Q_{2}$$

$$V_{b1} - Q_{2}$$

$$V_{b1} - Q_{2}$$

$$V_{out} \approx [g_{m3}r_{O3}(r_{O4} \parallel r_{\pi3})] \parallel [g_{m2}r_{O2}(r_{O1} \parallel r_{\pi2})]$$

$$V_{b1} - Q_{2}$$

$$V_{b1} - Q_{2}$$

 In order to preserve the high output impedance, a cascode PNP current source is used.

EE105 Spring 2008

Lecture 11, Slide 15

Prof. Wu, UC Berkeley

EE105 Fall 2007