Lecture 12

OUTLINE

Current Mirrors

Reading: Chapter 9.2

Temperature and Supply-Voltage Dependence of Bias Current

- Circuits should be designed to operate properly over a range of supply voltages and temperatures.
- For the biasing scheme shown below, I_1 depends on the temperature as well as the supply voltage, since V_T and I_S depend on temperature.

$$I_1 = I_S e^{V_{BE}/V_T}$$

$$V_{BE} \cong \frac{R_2}{R_1 + R_2} V_{CC}$$

Concept of a Current Mirror

- Circuit designs to provide a supply- and temperatureindependent current exist, but require many transistors to implement.
 - → "golden current source"
- A *current mirror* is used to replicate the current from a "golden current source" to other locations.

EE105 Spring 2008 Lecture 12, Slide 3 Prof. Wu, UC Berkeley

Current Mirror Circuitry

• Diode-connected Q_{RFF} produces an output voltage V_{x} that forces I_{copy1} to be equal to I_{REF} , if Q_1 is identical to Q_{REF} .

Lecture 12, Slide 4 Prof. Wu, UC Berkeley **EE105 Spring 2008**

Bad Current Mirror Example I

• Without shorting the collector and base of Q_{REF} together, there will not be a path for the base currents to flow, therefore, I_{copy} is zero.

Bad Current Mirror Example II

 Although a path for base currents exists, this technique of biasing is no better than resistive divider.

EE105 Spring 2008 Lecture 12, Slide 6 Prof. Wu, UC Berkeley

Multiple Copies of I_{REF}

 Multiple copies of I_{REF} can be generated at different locations by simply applying the idea of current mirror to more transistors.

EE105 Spring 2008 Lecture 12, Slide 7 Prof. Wu, UC Berkeley

Current Scaling

• By scaling the emitter area of Q_j n times with respect to Q_{REF} , $I_{copy,j}$ is also n times larger than I_{REF} . This is equivalent to placing n unit-size transistors in parallel.

EE105 Spring 2008 Lecture 12, Slide 8 Prof. Wu, UC Berkeley

Example: Scaled Current

EE105 Spring 2008 Lecture 12, Slide 9 Prof. Wu, UC Berkeley

Fractional Scaling

• A fraction of I_{REF} can be created in Q_1 by scaling up the emitter area of Q_{REF} .

$$I_{copy} = \frac{1}{3}I_{REF}$$

EE105 Spring 2008 Lecture 12, Slide 10 Prof. Wu, UC Berkeley

Example: Different Mirroring Ratio

• Using the idea of current scaling and fractional scaling, I_{copy2} is 0.5mA and I_{copy1} is 0.05mA respectively. All coming from a source of 0.2mA.

EE105 Spring 2008 Lecture 12, Slide 11 Prof. Wu, UC Berkeley

Effect of Base Currents

$$I_{C,REF} = \frac{I_{copy}}{n} + \frac{I_{copy}}{n\beta} + \frac{I_{copy}}{n\beta}$$

$$I_{C,REF} = \frac{I_{copy}}{n\beta} + \frac{I_{copy}}{n\beta} + \frac{I_{copy}}{n\beta} + \frac{I_{copy}}{n\beta}$$

$$I_{C,REF} = \frac{I_{copy}}{n\beta} + \frac{I_{copy}}$$

EE105 Spring 2008 Lecture 12, Slide 12 Prof. Wu, UC Berkeley

Improved Mirroring Accuracy

• Use Q_F (rather than I_{REF}) to supply the base currents of Q_{REF} and Q_1 , reduce the mirroring error by a factor of β .

EE105 Spring 2008 Lecture 12, Slide 13 Prof. Wu, UC Berkeley

Example: Different Mirroring Ratio Accuracy

$$I_{C,F} = \frac{I_{C,REF}}{\beta} + \frac{I_{copy1}}{\beta} + \frac{I_{copy2}}{\beta}$$

$$= \frac{4I_{copy1}}{\beta} + \frac{I_{copy1}}{\beta} + \frac{10I_{copy1}}{\beta}$$

$$= \frac{15I_{copy1}}{\beta}$$

$$I_{REF} = \frac{15I_{copy1}}{\beta^2} + I_{C,REF}$$

$$= \frac{15I_{copy1}}{\beta^2} + 4I_{copy1}$$

$$I_{copy1} = \frac{I_{REF}}{4 + \frac{15}{\beta^2}}$$

$$I_{copy2} = \frac{10I_{REF}}{4 + \frac{15}{\beta^2}}$$
Prof. Wu, UC Berkeley

PNP Current Mirror

 PNP current mirror is used as a current source load to an NPN amplifier stage.

EE105 Spring 2008 Lecture 12, Slide 15 Prof. Wu, UC Berkeley

Generation of I_{REF} for PNP Current Mirror

EE105 Spring 2008 Lecture 12, Slide 16 Prof. Wu, UC Berkeley

Example: Current Mirror with Discrete Devices

• Let Q_{REF} and Q_1 be discrete NPN devices. I_{REF} and I_{copy1} can vary in large magnitude due to I_S mismatch.

EE105 Spring 2008 Lecture 12, Slide 17 Prof. Wu, UC Berkeley