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 Frequency Response
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General considerations
High-frequency BJT model
Miller's Theorem

Frequency response of CE stage
Reading: Chapter 11.1-11.3
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Review: Sinusoidal Analysis

 Any voltage or current in a linear circuit with a sinusoidal
source is a sinusoid of the same frequency ().

— We only need to keep track of the amplitude and phase, when
determining the response of a linear circuit to a sinusoidal source.

 Any time-varying signal can be expressed as a sum of
sinusoids of various frequencies (and phases).
- Applying the principle of superposition:
— The current or voltage response in a linear circuit due to a
time-varying input signal can be calculated as the sum of the
sinusoidal responses for each sinusoidal component of the

input signal.
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High Frequency “Roll-Off” in A,

e Typically, an amplifier is designed to work over a
limited range of frequencies.

— At “high” frequencies, the gain of an amplifier decreases.
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A, Roll-Off due to C;

* A capacitive load (C,) causes the gain to decrease at
high frequencies.

— The impedance of C, decreases at high frequencies, so that
it shunts some of the output current to ground.

1
Rc= A\/:_gm(RC ”Wj
? ? ° Vout L
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Frequency Response of the CE Stage

* At low frequency, the capacitor is effectively an open
circuit, and A, vs. o is flat. At high frequencies, the
impedance of the capacitor decreases and hence the
gain decreases. The “breakpoint” frequency is 1/(R.C,).
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Amplifier Figure of Merit (FOM)

 The gain-bandwidth product is commonly used to

benchmark amplifiers.
— We wish to maximize both the gain and the bandwidth.

 Power consumption is also an important attribute.
— We wish to minimize the power consumption.

—_ Ve (g - 1
Rc= Gain x Bandwidth "1 R.C,

I l oV,,, PowerConsumption 1.V

Vino_la-Q1 CL — 1
I ViVec Gy

Operation at low T, low V., and with small C, = superior FOM
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Bode Plot

e The transfer function of a circuit can be written in the
general form

1+ -— Jo 14+ jo ...
o o A, is the low-frequency gain
2 22 o, are “zero” frequencies

1+ JQ)JLJ__'_ JCO] w,; are “pole” frequencies

H(jo)=A
[ a)pl a)pz
e Rules for generating a Bode magnitude vs. frequency plot:

— As w passes each zero frequency, the slope of |H(jw)| increases
by 20dB/dec.

— As w passes each pole frequency, the slope of |H(jw)| decreases
by 20dB/dec.
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Bode Plot Example

* This circuit has only one pole at w,,=1/(R.C,); the slope
of |A,|decreases from 0 to -20dB/dec at w,y,.

— Vee

Rc=

'TQ Vaut

Vout

20log
Vin

a)pl =

Wp1 logw

* In general, if nodej in the signal path has a small-
signal resistance of R; to ground and a capacitance C; to
ground, then it contributes a pole at frequency (R,C)™*
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Pole Identification Example

— Vee
Rc=
RS * l gvﬂut
Vino l EQ1 ICL
CinI - -
., = 1 ., = 1
— , =
Pl R.C. " R:C,
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High-Frequency BJT Model

e The BJT inherently has junction capacitances which
affect its performance at high frequencies.

Collector junction: depletion capacitance, C,

Emitter junction: depletion capacitance, G, and also
C liffusion capacitance, C,.

il c
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E
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BJT High-Frequency Model (cont’d)

* In an integrated circuit, the BJTs are fabricated in the
surface region of a Si wafer substrate; another
junction exists between the collector and substrate,
resulting in substrate junction capacitance, C...

BJT cross-section BJT small-signal model

Substrate Tc cs
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Example: BJT Capacitances

 The various junction capacitances within each BJT are
explicitly shown in the circuit diagram on the right.
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EE105 Spring 2008 Lecture 13, Slide 12 Prof. Wu, UC Berkeley



Transit Frequency, f;

* The “transit” or “cut-off” frequency, f;, is a measure
of the intrinsic speed of a transistor, and is defined as
the frequency where the current gain falls to 1.

Conceptual set-up to measure fI

| 1
= GV IOUt ‘gmzin‘ = gm(.cj =1
V ’Dut ac in Ja)r in

Iy =2 " GND g,
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- Q1 in
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n 2y ==+

H = CjZ
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Dealing with a Floating Capacitance

e Recall that a pole is computed by finding the resistance
and capacitance between a node and GROUND.

e |tis not straightforward to compute the pole due to C1
in the circuit below, because neither of its terminals is

grounded. — Ve
=R
+— Vout
C i
—|
|II/in':: _T_ 01 lc
Cri=m L I Cs1
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Miller’s Theorem

e If A, is the voltage gain from node 1 to 2, then a
floating impedance Z; can be converted to two
grounded impedances Z, and Z,:

Vl_vzzvl — 21:Z|: Vl :ZFL:Z]-
Z. Z Vi=V, 1
ONECVENING
+ +
V1 Vz y
i 1 Z4|| Vs
t * ]
V.-V, :_V_Z = Z,=-7Z vz =/ =2,
ZF 22 Vl —V2 1_}{6\/
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Miller Multiplication

 Applying Miller’s theorem, we can convert a floating
capacitance between the input and output nodes of
an amplifier into two grounded capacitances.

 The capacitance at the input node is larger than the
original floating capacitance.

A=A, ywc 1

" S A ot B e
Vino——{ -4, Vour R Vi

1
}/wc . CF(1+AU)I ICF(1+A_U)
a1 /x 1+A  joll+A)C: - =
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Application of Miller’s Theorem

Voo — Vbp
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-
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Small-Signal Model for CE Stage

l © Vout
ImVx Icuut Re

EE105 Spring 2008 Lecture 13, Slide 18 Prof. Wu, UC Berkeley



... Applying Miller’s Theorem

R Thev

I'n
r:r['l'RS
Rthev=Rs]|| rx
Cx= CH(1 "'ngc)

1
Cy=C,(1+ )
Y H Im Rc

VThev = Vin

EE105 Spring 2008
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Direct Analysis of CE Stage

e Direct analysis yields slightly different pole locations
and an extra zero:

I

C()Z:C—
U
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/0 Impedances of CE Stage
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