Lecture 13

OUTLINE

Frequency Response
 General considerations
 High-frequency BJT model
 Miller's Theorem
 Frequency response of CE stage

Reading: Chapter 11.1-11.3

Review: Sinusoidal Analysis

- Any voltage or current in a linear circuit with a sinusoidal source is a sinusoid of the same frequency (ω).
 - We only need to keep track of the amplitude and phase, when determining the response of a linear circuit to a sinusoidal source.

- Any time-varying signal can be expressed as a sum of sinusoids of various frequencies (and phases).
- → Applying the principle of superposition:
 - The current or voltage response in a linear circuit due to a time-varying input signal can be calculated as the sum of the sinusoidal responses for each sinusoidal component of the input signal.

EE105 Spring 2008 Lecture 13, Slide 2 Prof. Wu, UC Berkeley

High Frequency "Roll-Off" in A_v

- Typically, an amplifier is designed to work over a limited range of frequencies.
 - At "high" frequencies, the gain of an amplifier decreases.

EE105 Spring 2008 Lecture 13, Slide 3 Prof. Wu, UC Berkeley

$A_{\rm v}$ Roll-Off due to $C_{\rm L}$

- A capacitive load (C_L) causes the gain to decrease at high frequencies.
 - The impedance of C_L decreases at high frequencies, so that it shunts some of the output current to ground.

EE105 Spring 2008 Lecture 13, Slide 4 Prof. Wu, UC Berkeley

Frequency Response of the CE Stage

• At low frequency, the capacitor is effectively an open circuit, and A_v vs. ω is flat. At high frequencies, the impedance of the capacitor decreases and hence the gain decreases. The "breakpoint" frequency is $1/(R_CC_1)$.

$$A_{v} = -g_{m} \frac{R_{C} \frac{1}{j\omega C_{L}}}{R_{C} + \frac{1}{j\omega C_{L}}}$$

$$= \frac{-g_{m}R_{C}}{1 + j\omega R_{C}C_{L}}$$

$$A_{v} = \frac{g_{m}R_{C}}{\sqrt{R_{C}^{2}C_{L}^{2}\omega^{2} + 1}}$$

EE105 Spring 2008 Lecture 13, Slide 5 Prof. Wu, UC Berkeley

Amplifier Figure of Merit (FOM)

- The gain-bandwidth product is commonly used to benchmark amplifiers.
 - We wish to maximize both the gain and the bandwidth.
- Power consumption is also an important attribute.
 - We wish to minimize the power consumption.

$$V_{\text{in}} \sim V_{\text{out}} \qquad \frac{\text{Gain} \times \text{Bandwidth}}{\text{Power Consumption}} = \frac{(g_m R_c) \left(\frac{1}{R_c C_L}\right)}{I_c V_{cc}}$$

$$= \frac{1}{V_T V_{cc} C_L}$$

Operation at low T, low V_{CC} , and with small $C_L \rightarrow$ superior FOM

EE105 Spring 2008 Lecture 13, Slide 6 Prof. Wu, UC Berkeley

Bode Plot

The transfer function of a circuit can be written in the general form

$$H(j\omega) = A_0 \frac{\left(1 + \frac{j\omega}{\omega_{z1}}\right)\left(1 + \frac{j\omega}{\omega_{z2}}\right)\cdots}{\left(1 + \frac{j\omega}{\omega_{p1}}\right)\left(1 + \frac{j\omega}{\omega_{p2}}\right)\cdots} \qquad \begin{array}{l} A_0 \text{ is the low-frequency gain} \\ \omega_{zj} \text{ are "zero" frequencies} \\ \omega_{pj} \text{ are "pole" frequencies} \end{array}$$

- Rules for generating a Bode magnitude vs. frequency plot:
 - As ω passes each zero frequency, the slope of $|H(j\omega)|$ increases by 20dB/dec.
 - As ω passes each **pole** frequency, the **slope of |H(j\omega)| decreases** by 20dB/dec.

Bode Plot Example

• This circuit has only one pole at $\omega_{p1}=1/(R_{\rm C}C_{\rm L})$; the slope of $|A_{\rm v}|$ decreases from 0 to -20dB/dec at $\omega_{\rm p1}$.

• In general, if **node** j in the signal path has a small-signal resistance of R_j to ground and a capacitance C_j to ground, then it contributes a **pole at frequency** $(R_iC_i)^{-1}$

EE105 Spring 2008 Lecture 13, Slide 8 Prof. Wu, UC Berkeley

Pole Identification Example

$$\omega_{p1} = \frac{1}{R_S C_{in}}$$

$$\omega_{p2} = \frac{1}{R_C C_L}$$

High-Frequency BJT Model

 The BJT inherently has junction capacitances which affect its performance at high frequencies.

<u>Collector junction</u>: **depletion** capacitance, C_{μ}

Emitter junction: **depletion** capacitance, C_{ie} , and also

liffusion capacitance, C_h.

EE105 Spring 2008 Lecture 13, Slide 10 Prof. Wu, UC Berkeley

BJT High-Frequency Model (cont'd)

• In an integrated circuit, the BJTs are fabricated in the surface region of a Si wafer substrate; another junction exists between the collector and substrate, resulting in substrate junction capacitance, $C_{\rm CS}$.

EE105 Spring 2008 Lecture 13, Slide 11 Prof. Wu, UC Berkeley

Example: BJT Capacitances

 The various junction capacitances within each BJT are explicitly shown in the circuit diagram on the right.

EE105 Spring 2008 Lecture 13, Slide 12 Prof. Wu, UC Berkeley

Transit Frequency, f_T

• The "transit" or "cut-off" frequency, f_T , is a measure of the intrinsic speed of a transistor, and is defined as the frequency where the current gain falls to 1.

Conceptual set-up to measure f_T

$$\left| \frac{I_{out}}{I_{in}} \right| = \left| g_m Z_{in} \right| = \left| g_m \left(\frac{1}{j \omega_T C_{in}} \right) \right| = 1$$

$$\Rightarrow \omega_T = \frac{g_m}{C}$$

$$2\pi f_T = \frac{g_m}{C_\pi}$$

EE105 Spring 2008 Lecture 13, Slide 13 Prof. Wu, UC Berkeley

Dealing with a Floating Capacitance

 Recall that a pole is computed by finding the resistance and capacitance between a node and GROUND.

• It is not straightforward to compute the pole due to $C_{\mu1}$ in the circuit below, because neither of its terminals is

grounded.

EE105 Spring 2008 Lecture 13, Slide 14 Prof. Wu, UC Berkeley

Miller's Theorem

• If A_v is the voltage gain from node 1 to 2, then a floating impedance Z_F can be converted to two grounded impedances Z_1 and Z_2 :

$$\frac{V_1 - V_2}{Z_F} = \frac{V_1}{Z_1} \implies Z_1 = Z_F \frac{V_1}{V_1 - V_2} = Z_F \frac{1}{1 - A_V} = Z_1$$

$$\frac{V_1 - V_2}{Z_F} = -\frac{V_2}{Z_2} \implies Z_2 = -Z_F \frac{V_2}{V_1 - V_2} = Z_F \frac{1}{1 - \frac{1}{A_v}} = Z_2$$

EE105 Spring 2008

Lecture 13, Slide 15

Prof. Wu, UC Berkeley

Miller Multiplication

- Applying Miller's theorem, we can convert a floating capacitance between the input and output nodes of an amplifier into two grounded capacitances.
- The capacitance at the input node is larger than the original floating capacitance.

EE105 Spring 2008

Lecture 13, Slide 16

Prof. Wu, UC Berkeley

Application of Miller's Theorem

$$V_{\text{in}} \sim W_{\text{DD}}$$
 $V_{\text{out}} \sim V_{\text{out}}$
 $V_{\text{in}} \sim W_{\text{out}}$
 $V_{\text{in}} \sim W_{\text{out}}$

$$\omega_{p,in} = \frac{1}{R_c (1 + g_m R_c) C_E} \implies \text{Dominant Pole since } \omega_{p,in} > \omega_{p,out}$$

$$\omega_{p,out} = \frac{1}{R_C \left(1 + \frac{1}{g_m R_C}\right) C_F}$$

EE105 Spring 2008

Small-Signal Model for CE Stage

EE105 Spring 2008 Lecture 13, Slide 18 Prof. Wu, UC Berkeley

... Applying Miller's Theorem

$$V_{\text{Thev}} = V_{\text{in}} \frac{r_{\pi}}{r_{\pi} + R_{S}}$$

$$R_{\text{Thev}} = R_{S} || r_{\pi}$$

$$c_{\rm X} = c_{\rm \mu} (1 + g_{\rm m} R_{\rm c})$$

 $c_{\rm Y} = c_{\rm \mu} (1 + \frac{1}{g_{\rm m} R_{\rm c}})$

$$\omega_{p,in} = \frac{1}{R_{Thev} \left(C_{in} + \left(1 + g_m R_C \right) C_{\mu} \right)}$$

⇒ Dominant pole

$$\omega_{p,out} = \frac{1}{R_C \left(C_{out} + \left(1 + \frac{1}{g_m R_C} \right) C_{\mu} \right)}$$

EE105 Spring 2008 Lecture 13, Slide 19 Prof. Wu, UC Berkeley

Direct Analysis of CE Stage

 Direct analysis yields slightly different pole locations and an extra zero:

$$\omega_z = \frac{g_m}{C_\mu}$$

$$\omega_{p1} = \frac{1}{\left(1 + g_{m}R_{C}\right)C_{\mu}R_{Thev} + R_{Thev}C_{in} + R_{C}\left(C_{\mu} + C_{out}\right)}$$

$$\omega_{p2} = \frac{\left(1 + g_{m}R_{C}\right)C_{\mu}R_{Thev} + R_{Thev}C_{in} + R_{C}\left(C_{\mu} + C_{out}\right)}{R_{Thev}R_{C}\left(C_{in}C_{\mu} + C_{out}C_{\mu} + C_{in}C_{out}\right)}$$

I/O Impedances of CE Stage

$$Z_{in} \approx \frac{1}{j\omega \left[C_{\pi} + \left(1 + g_{m}(R_{C} \| r_{o})\right)C_{\mu}\right]} \| r_{\pi} \qquad Z_{out} = \frac{1}{j\omega \left[C_{\mu} + C_{CS}\right]} \| R_{C} \| r_{o} \| r_$$

EE105 Spring 2008 Lecture 13, Slide 21 Prof. Wu, UC Berkeley