EE105 Fall 2007

Lecture 13

OUTLINE

* Frequency Response
General considerations
High-frequency BJT model
Miller’s Theorem
Frequency response of CE stage

Reading: Chapter 11.1-11.3
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Review: Sinusoidal Analysis

* Any voltage or current in a linear circuit with a sinusoidal
source is a sinusoid of the same frequency (o).

— We only need to keep track of the amplitude and phase, when
determining the response of a linear circuit to a sinusoidal source.

* Any time-varying signal can be expressed as a sum of
sinusoids of various frequencies (and phases).
- Applying the principle of superposition:
— The current or voltage response in a linear circuit due to a
time-varying input signal can be calculated as the sum of the
sinusoidal responses for each sinusoidal component of the

input signal.
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High Frequency “Roll-Off” in A,

* Typically, an amplifier is designed to work over a
limited range of frequencies.
— At “high” frequencies, the gain of an amplifier decreases.
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A, Roll-Off due to C,

* A capacitive load (C,) causes the gain to decrease at
high frequencies.

— The impedance of C, decreases at high frequencies, so that
it shunts some of the output current to ground.

VCC
1
Rc &=—9m£RC =
JaCy
Vo ut
Vin Q1 I CL
EE105 Spring 2008 Lecture 13, Slide 4 Prof. Wu, UC Berkeley

3/11/2008



EE105 Fall 2007

Frequency Response of the CE Stage

* At low frequency, the capacitor is effectively an open
circuit, and A, vs. o is flat. At high frequencies, the
impedance of the capacitor decreases and hence the
gain decreases. The “breakpoint” frequency is 1/(R.C,).
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Amplifier Figure of Merit (FOM)

* The gain-bandwidth product is commonly used to
benchmark amplifiers.

— We wish to maximize both the gain and the bandwidth.
* Power consumption is also an important attribute.
— We wish to minimize the power consumption.
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Operation at low T, low V¢, and with small C, = superior FOM
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Bode Plot

¢ The transfer function of a circuit can be written in the
general form

1+ Jﬁ 1+ Jﬁ .
® ® A, is the low-frequency gain
H(jo)=A, 2 22 , are “zero” frequencies
(1+

jo 1 jo w,; are “pole” frequencies
I Ry (NI bl JN
Cupl CDpZ

* Rules for generating a Bode magnitude vs. frequency plot:

— As w passes each zero frequency, the slope of |H(jw)| increases

by 20dB/dec.
— As w passes each pole frequency, the slope of |H(jw)| decreases
by 20dB/dec.
EE105 Spring 2008 Lecture 13, Slide 7 Prof. Wu, UC Berkeley

Bode Plot Example

* This circuit has only one pole at w;=1/(R.C,); the slope
of |A,|decreases from 0 to -20dB/dec at w,;.

vout

Wp1 logm

* In general, if node j in the signal path has a small-
signal resistance of R; to ground and a capacitance C; to
ground, then it contributes a pole at frequency (RjCj)‘1
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Pole Identification Example
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High-Frequency BJT Model

* The BJT inherently has junction capacitances which
affect its performance at high frequencies.
Collector junction: depletion capacitance, C.

Emitter junction: depletion capacitance, C, and also
c liffusion capacitance, C,.
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BJT High-Frequency Model (cont’d)

* In an integrated circuit, the BJTs are fabricated in the
surface region of a Si wafer substrate; another
junction exists between the collector and substrate,
resulting in substrate junction capacitance, Cg.
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Example: BJT Capacitances

* The various junction capacitances within each BJT are
explicitly shown in the circuit diagram on the right.
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Transit Frequency, f;

* The “transit” or “cut-off” frequency, f;, is a measure
of the intrinsic speed of a transistor, and is defined as
the frequency where the current gain falls to 1.
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Dealing with a Floating Capacitance

* Recall that a pole is computed by finding the resistance
and capacitance between a node and GROUND.

* Itis not straightforward to compute the pole due to C;
in the circuit below, because neither of its terminals is

grounded. _r Vee
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Miller’s Theorem

e IfA,is the voltage gain from node 1 to 2, then a
floating impedance Z; can be converted to two
grounded impedances Z, and Z,:
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Miller Multiplication

* Applying Miller’s theorem, we can convert a floating
capacitance between the input and output nodes of
an amplifier into two grounded capacitances.

* The capacitance at the input node is larger than the
original floating capacitance.
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Application of Miller’s Theorem
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Small-Signal Model for CE Stage
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... Applying Miller’s Theorem
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Direct Analysis of CE Stage

* Direct analysis yields slightly different pole locations
and an extra zero:
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1/0 Impedances of CE Stage
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