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Lecture 13 Review: Sinusoidal Analysis

¢ Any voltage or current in a linear circuit with a sinusoidal
OUTLINE source is a sinusoid of the same frequency ().

— We only need to keep track of the amplitude and phase, when

« Frequency Response determining the response of a linear circuit to a sinusoidal source.

General considerations
High-frequency BJT model . . .
Miller's Theorem ¢ Any time-varying signal can be expressed as a sum of

Frequency response of CE stage sinusoids of various frequencies (and phases).

Reading: Chapter 11.1-11.3 - Applying the principle of superposition:

— The current or voltage response in a linear circuit due to a
time-varying input signal can be calculated as the sum of the
sinusoidal responses for each sinusoidal component of the

input signal.
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High Frequency “Roll-Off” in A, A, Roll-Off due to C,
¢ Typically, an amplifier is designed to work over a * A capacitive load (C,) causes the gain to decrease at
limited range of frequencies. high frequencies.
— At “high” frequencies, the gain of an amplifier decreases. — The impedance of C, decreases at high frequencies, so that

it shunts some of the output current to ground.
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Frequency Response of the CE Stage

* At low frequency, the capacitor is effectively an open
circuit, and A, vs. o is flat. At high frequencies, the
impedance of the capacitor decreases and hence the
gain decreases. The “breakpoint” frequency is 1/(R.C,).
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Amplifier Figure of Merit (FOM)

¢ The gain-bandwidth product is commonly used to
benchmark amplifiers.
— We wish to maximize both the gain and the bandwidth.

* Power consumption is also an important attribute.
— We wish to minimize the power consumption.
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Operation at low T, low V¢, and with small C, = superior FOM
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Bode Plot

¢ The transfer function of a circuit can be written in the

general form
Jo Jo
(1+QT 1+ . | Agis the low-frequency gain
H(jo)=A>—2L—24—  w;are “zero’ frequencies

[1+ jw][l+ ja)] @, are “pole” frequencies

a)pi a)pz

Rules for generating a Bode magnitude vs. frequency plot:

— As w passes each zero frequency, the slope of |H(jw)| increases
by 20dB/dec.

— As w passes each pole frequency, the slope of |H(j@)| decreases
by 20dB/dec.
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Bode Plot Example

* This circuit has only one pole at w,;=1/(R.C,); the slope
of |A,|decreases from 0 to -20dB/dec at w,,;.
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¢ In general, if node j in the signal path has a small-
signal resistance of R, to ground and a capacitance C; to
ground, then it contributes a pole at frequency (Rj(.'j)‘1
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Pole Identification Example High-Frequency BJT Model

¢ The BJT inherently has junction capacitances which
affect its performance at high frequencies.
Collector junction: depletion capacitance, C,

Emitter junction: depletion capacitance, G, and also
fiffusion capacitance, C,.

C,.=C,
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BJT High-Frequency Model (cont’d) Example: BJT Capacitances

¢ The various junction capacitances within each BJT are

* In an integrated circuit, the BJTs are fabricated in the
explicitly shown in the circuit diagram on the right.

surface region of a Si wafer substrate; another

. . . -V,
junction exists between the collector and substrate, ce
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Transit Frequency, f;

* The “transit” or “cut-off” frequency, f, is a measure

the frequency where the current gain falls to 1.

Conceptual set-up to measure f;

of the intrinsic speed of a transistor, and is defined as
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Dealing with a Floating Capacitance

¢ Recall that a pole is computed by finding the resistance
and capacitance between a node and GROUND.

* Itis not straightforward to compute the pole due to C,;
in the circuit below, because neither of its terminals is
grounded.
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Miller’s Theorem

* If A, is the voltage gain from node 1 to 2, then a
floating impedance Z; can be converted to two
grounded impedances Z, and Z,:
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Miller Multiplication

* Applying Miller’s theorem, we can convert a floating
capacitance between the input and output nodes of
an amplifier into two grounded capacitances.

¢ The capacitance at the input node is larger than the
original floating capacitance.
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Application of Miller’s Theorem
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Small-Signal Model for CE Stage
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... Applying Miller’s Theorem
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Direct Analysis of CE Stage

* Direct analysis yields slightly different pole locations
and an extra zero:
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1/0 Impedances of CE Stage
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