Lecture 13

OUTLINE

Frequency Response
 General considerations
 High-frequency BJT model
 Miller's Theorem
 Frequency response of CE stage
 Reading: Chapter 11.1-11.3

EE105 Spring 2008

Lecture 13, Slide 1

Prof. Wu. UC Berkeley

Review: Sinusoidal Analysis

- Any voltage or current in a linear circuit with a sinusoidal source is a sinusoid of the same frequency (ω).
 - We only need to keep track of the amplitude and phase, when determining the response of a linear circuit to a sinusoidal source.
- Any time-varying signal can be expressed as a sum of sinusoids of various frequencies (and phases).
- → Applying the principle of superposition:
 - The current or voltage response in a linear circuit due to a time-varying input signal can be calculated as the sum of the sinusoidal responses for each sinusoidal component of the input signal.

EE105 Spring 2008

Lecture 13, Slide 2

Prof. Wu. UC Berkeley

High Frequency "Roll-Off" in A_v

- Typically, an amplifier is designed to work over a limited range of frequencies.
 - At "high" frequencies, the gain of an amplifier decreases.

EE105 Spring 2008

Lecture 13, Slide 3

Prof. Wu, UC Berkeley

A_{v} Roll-Off due to C_{L}

- A capacitive load (C_L) causes the gain to decrease at high frequencies.
 - The impedance of $C_{\rm L}$ decreases at high frequencies, so that it shunts some of the output current to ground.

EE105 Spring 2008

Lecture 13, Slide 4

Prof. Wu, UC Berkeley

Frequency Response of the CE Stage

• At low frequency, the capacitor is effectively an open circuit, and A_v vs. ω is flat. At high frequencies, the impedance of the capacitor decreases and hence the gain decreases. The "breakpoint" frequency is $1/(R_cC_1)$.

Amplifier Figure of Merit (FOM)

- The gain-bandwidth product is commonly used to benchmark amplifiers.
 - We wish to maximize both the gain and the bandwidth.
- Power consumption is also an important attribute.
 - We wish to minimize the power consumption.

Operation at low T, low V_{CC} , and with small $C_L \Rightarrow$ superior FOM

EE105 Spring 2008

Lecture 13, Slide 6

Prof. Wu, UC Berkeley

EE105 Fall 2007

Bode Plot

 The transfer function of a circuit can be written in the general form

$$H(j\omega) = A_0 \frac{\left(1 + \frac{j\omega}{\omega_{z1}}\right) \left(1 + \frac{j\omega}{\omega_{z2}}\right) \cdots}{\left(1 + \frac{j\omega}{\omega_{p1}}\right) \left(1 + \frac{j\omega}{\omega_{p2}}\right) \cdots} \qquad \begin{array}{l} A_0 \text{ is the low-frequency gain} \\ \omega_{2j} \text{ are "zero" frequencies} \\ \omega_{pj} \text{ are "pole" frequencies} \end{array}$$

- Rules for generating a Bode magnitude vs. frequency plot:
 - As ω passes each **zero** frequency, the **slope of |H(j\omega)| increases** by 20dB/dec.
 - As ω passes each **pole** frequency, the **slope of |H(j\omega)| decreases** by 20dB/dec.

EE105 Spring 2008

EE105 Spring 2008

Lecture 13, Slide 7

Prof. Wu. UC Berkeley

Prof. Wu. UC Berkeley

Bode Plot Example

• This circuit has only one pole at $\omega_{p1}=1/(R_cC_1)$; the slope of $|A_v|$ decreases from 0 to -20dB/dec at ω_{p1} .

In general, if node j in the signal path has a small-signal resistance of R_i to ground and a capacitance C_i to ground, then it contributes a pole at frequency (R_iC_i)⁻¹

EE105 Spring 2008

Lecture 13, Slide 8

Prof. Wu, UC Berkele

Pole Identification Example

High-Frequency BJT Model

 The BJT inherently has junction capacitances which affect its performance at high frequencies.
 <u>Collector junction</u>: depletion capacitance, C_μ

Emitter junction: depletion capacitance, $C_{\rm je}$, and also liffusion capacitance, $C_{\rm b}$. $C_{\rm in}$ $C_{$

EE105 Spring 2008 Lecture 13, Slide 10 Prof. Wu, UC Berkeley

BJT High-Frequency Model (cont'd)

Lecture 13, Slide 9

• In an integrated circuit, the BJTs are fabricated in the surface region of a Si wafer substrate; another junction exists between the collector and substrate, resulting in substrate junction capacitance, C_{CS}.

Example: BJT Capacitances

• The various junction capacitances within each BJT are explicitly shown in the circuit diagram on the right.

EE105 Fall 2007 2

Transit Frequency, f_T

 The "transit" or "cut-off" frequency, f_τ, is a measure of the intrinsic speed of a transistor, and is defined as the frequency where the current gain falls to 1.

Conceptual set-up to measure f_T

Dealing with a Floating Capacitance

- Recall that a pole is computed by finding the resistance and capacitance between a node and GROUND.
- It is not straightforward to compute the pole due to $C_{\mu 1}$ in the circuit below, because neither of its terminals is grounded.

EE105 Spring 2008 Lecture 13, Slide 14 Prof.

Miller's Theorem

 If A_v is the voltage gain from node 1 to 2, then a floating impedance Z_F can be converted to two grounded impedances Z₁ and Z₂:

$$\frac{V_1 - V_2}{Z_F} = \frac{V_1}{Z_1} \quad \Rightarrow \quad Z_1 = Z_F \frac{V_1}{V_1 - V_2} = Z_F \frac{1}{1 - A_v} = Z_1$$

Miller Multiplication

- Applying Miller's theorem, we can convert a floating capacitance between the input and output nodes of an amplifier into two grounded capacitances.
- The capacitance at the input node is larger than the original floating capacitance.

Application of Miller's Theorem

Small-Signal Model for CE Stage

EE105 Fall 2007

Direct Analysis of CE Stage

• Direct analysis yields slightly different pole locations and an extra zero:

$$\begin{split} \omega_{z} &= \frac{g_{m}}{C_{\mu}} \\ \omega_{p1} &= \frac{1}{\left(1 + g_{m}R_{C}\right)C_{\mu}R_{Thev} + R_{Thev}C_{in} + R_{C}\left(C_{\mu} + C_{out}\right)} \\ \omega_{p2} &= \frac{\left(1 + g_{m}R_{C}\right)C_{\mu}R_{Thev} + R_{Thev}C_{in} + R_{C}\left(C_{\mu} + C_{out}\right)}{R_{Thev}R_{C}\left(C_{in}C_{\mu} + C_{out}C_{\mu} + C_{in}C_{out}\right)} \end{split}$$

EE105 Spring 2008 Lecture 13, Slide 20 Prof. Wu, UC Berkeley

EE105 Fall 2007 4