Lecture 15

OUTLINE

MOSFET structure & operation (qualitative)
* Review of electrostatics
The (N)MOS capacitor

— Electrostatics

— Charge vs. voltage characteristic

Reading: Chapter 6.1-6.2.1
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The MOSFET

Metal-Oxide-Semiconductor

GATE LENGTH, L,
Field-Effect Transistor:

OXIDE THICKNESS, T,

Source

Substrate
J U NCTlON DEPTH, XJ Forum, September 2004

M. Bohr, Intel Developer

* Current flowing through the channel between the
source and drain is controlled by the gate voltage.

|_
= “N-channel” & “P-channel” MOSFETSs il A
operate in a complementary manner =0
“CMOS” = Complementary MOS IGATE VOLTAGE]
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N-Channel MOSFET Structure

Conductive
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 The conventional gate material is heavily doped polycrystalline
silicon (referred to as “polysilicon” or “poly-Si” or “poly”)

— Note that the gate is usually doped the same type as the source/drain,
i.e. the gate and the substrate are of opposite types.

* The conventional gate insulator material is SiO.,.

 To minimize current flow between the substrate (or “body”) and
the source/drain regions, the p-type substrate is grounded.
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Review: Charge in a Semiconductor

* Negative charges:
— Conduction electrons (density = n)
— lonized acceptor atoms (density = N,)

* Positive charges:
— Holes (density = p)
— lonized donor atoms (density = N)

* The net charge density [C/cm?3] in a semiconductor is

p:q(p_n+ND_NA)

* Note that p, n, N,, and N, each can vary with position.

 The mobile carrier concentrations (n and p) in the channel of
a MOSFET can be modulated by an electric field via V..
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Channel Formation (Qualitative)

* As the gate voltage (V) is increased, holes I ‘V+ Ve < Vy

are repelled away from the substrate surface. " ° "
i i i To006 6|
— The surface is depleted of mobile carriers. The @ 99 T

charge density within the depletion region is
determined by the dopant ion density.

p-suhstrate

Deﬁletinn
Region

* As V; increases above the threshold voltage
V;,, @ layer of conduction electrons forms at
the substrate surface.

— For V>V, n> N, at the surface.
— The surface region is “inverted” to be n-type.

Conduction Electrons

p-substrate

The electron inversion layer serves as a resistive path (channel) for current to
flow between the heavily doped (i.e. highly conductive) source and drain regions.
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Voltage-Dependent Resistor

* |n the ON state, the MOSFET channel can be viewed as a resistor.
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e Since the mobile charge density within the channel depends on
the gate voltage, the channel resistance is voltage-dependent.

p-substrate
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Channel Length & Width Dependence

e Shorter channel length and wider channel width each yield
lower channel resistance, hence larger drain current.

— Increasing W also increases the gate capacitance, however, which
limits circuit operating speed (frequency).

Short \"J’ +

Lung _‘:@r
Ll -—
Vo Vp
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Comparison: BJT vs. MOSFET

In a BJT, current (/) is limited by diffusion of carriers from the
emitter to the collector.

— I increases exponentially with input voltage (V;), because theV N
carrier concentration gradient in the base is proportionalto € * '

In a MOSFET, current (/) is limited by drift of carriers from the
source to the drain.

— I increases ~linearly with input voltage (V(), because the carrier
concentration in the channel is proportional to (V;-V;,)

In order to understand how MOSFET design parameters affect MOSFET
performance, we first need to understand how a MOS capacitor works...
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MOS Capacitor

A metal-oxide-semiconductor structure can be considered as a
parallel-plate capacitor, with the top plate being the positive
plate, the gate insulator being the dielectric, and the p-type
semiconductor substrate being the negative plate.

Conductive T

Plate ~——™ |
—a— Insulator

p-Type %
Silicon T
* The negative charges in the semiconductor (for V > 0) are
comprised of conduction electrons and/or acceptor ions.

In order to understand how the potential and charge distributions

within the Si depend on V., we need to be familiar with electrostatics...
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Gauss’ Law

yo pis the net charge density
V-E=—
&

— If the magnitude of electric field changes, there must be charge!
* In acharge-free region, the electric field must be constant.

¢ is the dielectric permittivity

* Gauss’ Law equivalently says that if there is a net electric field
leaving a region, there must be positive charge in that region:

P
[ﬁV-EdV _[ﬁgdv

\ \

. _{E. Pay R
iv E dV fE ds i«? -

bbbt bbb+ §; E dS B Q The integral of the electric field over a

@Q _l l l LU_U_U_H l l LD < | closed surface is proportional to the

E charge within the enclosed volume
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Gauss’ Law in 1-D

V-E:dE _P
dx ¢
dE:de
£

E(x) = E(xo)+f@dx'
Xo &

* Consider a pulse charge distribution:

E(X)
(X)
60 X X T |
—aN, 0 X,
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Electrostatic Potential

 The electric field (force) is related to the potential (energy):

2
o AV AV e
dx dx g
— Note that an electron (—g charge) drifts in the direction of increasing
potential: dv
F.=—0E =-q—
dx
E(X) V (X)
p(X)
9 x, T T
X I X I
_qN A b Xd b Xd
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Boundary Conditions

* Electrostatic potential must be a continuous function.
Otherwise, the electric field (force) would be infinite.

e Electric field does not have to be continuous, however.
Consider an interface between two materials:

AT E, (5) feE-dS =—£ES +,E,S = Quue
s
T l ll lillll\\ If Qinside AX—0 >O’ then
E, (&) S
-&ES+¢,E,S=0
E, ¢
E, &

Discontinuity in electric displacement sE-> charge density at interface!
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MOS Capacitor Electrostatics

* Gate electrode:
— Since E(x) = 0 in a metallic material, V(x) is constant.

* Gate-electrode/gate-insulator interface:
— The gate charge is located at this interface.
— E(x) changes to a non-zero value inside the gate insulator.

e Gate insulator:
— |deally, there are no charges within the gate insulator.
- E(x) is constant, and V(x) is linear.

* Gate-insulator/semiconductor interface:
— Since the dielectric permittivity of SiO, is lower than that of
Si, E(x) is larger in the gate insulator than in the Si.

* Semiconductor:
— If p(x) is constant (non-zero), then V(x) is quadratic.
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MOS Capacitor: V ;=0

e If the gate and substrate materials are not the same (typically the
case), there is a built-in potential (~1V across the gate insulator).
— Positive charge is located at the gate interface, and negative charge in the Si.
— The substrate surface region is depleted of holes, down to a depth X,

p(X)

/ ]
I Xdo

X
0 - gate charge, O
\V (X) '“'-:x,uf = - gate oxide
Vq Lo & & 2 P C}: «+— depletion region with

1 0 u ] i = - - -, F

: S DB 800y bulkcharge o
! p-type substrate Tx
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! /////’r metal interconnect to bulk ///’/
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'toxo Xdo
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Flatband Voltage, V.,

* The built-in potential can be “cancelled out” by applying a gate
voltage that is equal in magnitude (but of the opposite polarity)

as the built-in potential. This gate voltage is called the flatband
voltage because the resulting potential profile is flat.

Ip(X)
I
'to:x
0
V (x)
X
-t: 0

OX

EE105 Spring 2008

s

p-type X
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There is no net charge (i.e. p(x)=0) in
the semiconductor under for Vgg = V.
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Voltage Drops across a MOS Capacitor

_ V(x)
VGB _VFB _Vox JrVs :

Conductive
Plate —™
—=— Insulator

S B

* If we know the total charge within the semiconductor (Q’),
we can find the electric field within the gate insulator (E_,)
and hence the voltage drop across the gate insulator (V,,):

-Q; - Qs -Qq
E-dS=E, A= > Vox = ontox = Loy =
§§ > g Ae C

OX (0),¢

OX

where Q is the areal charge density in the semiconductor [C/cm?]
and C_, = ¢, /’[OX is the areal gate capacitance [F/cm?]
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Vg < Vg (Accumulation)

* |If a gate voltage more negative than V,; is applied, then holes
will accumulate at the gate-insulator/semiconductor interface.

X
p(x)
4 Bl s s rss s
t,, S
> X Ve | 3333333233933
l v R o s At S Ak A kAt a1 1 &
0 “Vre
V(x)
N\
'tox i -
i X Areal gate charge density [C/cm?]:
0 Qs =C, '(VGB _VFB)
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Vig < Vg < Vo, (Depletion)

* If the applied gate voltage is greater than V;, then the
semiconductor surface will be depleted of holes.

— If the applied gate voltage is less than V., the concentration of
conduction electrons at the surface is smaller than N, =2 p(x) = -gN,(x)

> X

Areal depletion
V(X) charge density [C/cm?]:

! Qdep qN X 2
— Vis Vg =V, 4V, = Iua%a , ANAZ,

i Cox 2‘98i

| 2 (\/_
__t,_OL;(%x =X, _ &5 14 ZCOX(VGB VFB) q

o d Cox ngiNA
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Vg > Vyy (Inversion)

If the applied gate voltage is greater than V;,, thenn >N, at
the semiconductor surface.

N
— At Vg = Vy, the total potential dropped in the Siis 2¢, where ¢; =V, In(nAJ

INVEersion

p(¥) ez [

---------------------------

A A A,

& ionized acceptors
@ electrons in inversion layer

\/zqgsi N A (20;)

0X

Vi =Vig + 20 +

OX Xd,max
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Maximum Depletion Depth, X ..,

* As V,yisincreased above Vo, V. and hence the depth of the
depletion region (X,) increases very slowly.

— This is because n increases exponentially with V., whereas X
increases with the square root of V.. Thus, most of the
incremental negative charge in the semiconductor comes from
additional conduction electrons rather than additional ionized
acceptor atoms, when n exceeds N,.

—> X, can be reasonably approximated to reach a maximum

value (Xy nay) for Vg 2 Vo,
— Qyep thus reaches a maximum of Qe o @t Vg = V.

* If we assume that only the inversion-layer charge increases
with increasing V., above V., then

Qinv — _Cox (VGB _VTH ) and so QG (VGB) — Cox (VGB _VTH )"‘ Qdep,max
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Q-V Curve for MOS Capacitor

Qdep,max = _qNAXd,max = _\/quAgSi (2¢B)

EE105 Spring 2008 Lecture 15, Slide 22 Prof. Wu, UC Berkeley



	Lecture 15
	The MOSFET
	N-Channel MOSFET Structure
	Review: Charge in a Semiconductor
	Channel Formation (Qualitative)
	Voltage-Dependent Resistor
	Channel Length & Width Dependence
	Comparison: BJT vs. MOSFET
	MOS Capacitor
	Gauss’ Law
	Gauss’ Law in 1-D
	Electrostatic Potential
	Boundary Conditions
	MOS Capacitor Electrostatics
	MOS Capacitor: VGB = 0
	Flatband Voltage, VFB
	Voltage Drops across a MOS Capacitor
	VGB < VFB (Accumulation)
	VFB < VGB < VTH (Depletion)
	VGB > VTH (Inversion)
	Maximum Depletion Depth, Xd,max
	Q-V Curve for MOS Capacitor

