Lecture 16 #### **OUTLINE** - MOSFET structure & operation (qualitative) - Large-signal I-V characteristics - Channel length modulation - Small-signal model - Reading: Chapter 6.1-6.3 EE105 Spring 2008 Lecture 16, Slide 1 Prof. Wu, UC Berkeley Prof. Wu, UC Berkeley #### Metal-Oxide-Semiconductor (MOS) Capacitor The MOS structure can be thought of as a parallelplate capacitor, with the top plate being the positive plate, oxide being the dielectric, and Si substrate being the negative plate. (We are assuming Psubstrate.) EE105 Spring 2008 Lecture 16, Slide 2 Prof. Wu. UC Berkele # **Structure and Symbol of MOSFET** This device is symmetric, so either of the n+ regions can be source or drain. EE105 Spring 2008 Lecture 16, Slide 3 # **State of the Art MOSFET Structure** The gate is formed by polysilicon, and the insulator by Silicon dioxide. EE105 Spring 2008 Lecture 16, Slide 4 Prof. Wu, UC Berkeley # Effect of Gate Width: W As the gate width increases, the current increases due to a decrease in resistance. However, gate capacitance also increases thus, limiting the speed of the circuit. An increase in W can be seen as two devices in parallel. EE105 Spring 2008 Lecture 16, Slide 10 Prof. Wu, UC Berkeley # Channel Potential Variation Gate-Substrate Potential Difference V(x) Since there's a channel resistance between drain and source, and if drain is biased higher than the source, channel potential increases from source to drain, and the potential between gate and channel will decrease from source to drain. EE105 Spring 2008 Lecture 16, Slide 11 Prof. Wu, UC Berkeley # **Channel Charge Density** $$Q = WC_{ox}(V_{GS} - V_{TH})$$ The channel charge density is equal to the gate capacitance times the gate voltage in excess of the threshold voltage. EE105 Spring 2008 # **Charge Density at a Point** $Q(x) = WC_{ox}[V_{GS} - V(x) - V_{TH}]$ • Let x be a point along the channel from source to drain, and V(x) its potential; the expression above gives the charge density (per unit length). EE105 Spring 2008 Lecture 16, Slide 14 # Parabolic I_D-V_{DS} Relationship $I_D = WC_{ox} \left[V_{GS} - V(x) - V_{TH} \right] \mu_n \frac{dV(x)}{dx}$ occurs when $\rm V_{DS}\,$ equals to $\rm V_{GS^-}\,V_{TH}.$ EE105 Spring 2008 Lecture 16, Slide 15 Prof. Wu, UC Berkeley By keeping V_G constant and varying V_{DS}, we obtain a parabolic • The maximum current relationship. # I_D-V_{DS} for Different Values of V_{GS} #### **Linear Resistance** - At small V_{DS}, the transistor can be viewed as a resistor, with the resistance depending on the gate voltage. - It finds application as an electronic switch. Prof. Wu, UC Berkeley # **Effects of On-Resistance** $\bullet~$ To minimize signal attenuation, $\rm R_{on}$ of the switch has to be as small as possible. This means larger W/L aspect ratio and greater $\rm V_{GS}.$ EE105 Spring 2008 Lecture 16, Slide 19 Prof. Wu, UC Berkeley #### How to Determine 'Region of Operation' - When the potential difference between gate and drain is greater than V_{TH}, the MOSFET is in triode region. - When the potential difference between gate and drain becomes equal to or less than V_{TH}, the MOSFET enters saturation region. EE105 Spring 2008 Lecture 16, Slide 21 Drof Wu LIC Barkala #### **Triode or Saturation?** • When the region of operation is not known, a region is assumed (with an intelligent guess). Then, the final answer is checked against the assumption. EE105 Spring 2008 Lecture 16, Slide 22 Prof. Wu, UC Berkeley # **Channel-Length Modulation** The original observation that the current is constant in the saturation region is not quite correct. The end point of the channel actually moves toward the source as V_D increases, increasing I_D. Therefore, the current in the saturation region is a weak function of the drain voltage. EE105 Spring 2008 Lecture 16, Slide 23 Prof. Wu, UC Berkeley # λ and L - Unlike the Early voltage in BJT, the channel-length modulation factor can be controlled by the circuit designer. - For long L, the channel-length modulation effect is less than that of short L. EE105 Spring 2008 Lecture 16, Slide 24 Prof. Wu, UC Berkeley # **Transconductance** | $\frac{W}{L}$ Constant $V_{GS} - V_{TH}$ Variable | $\frac{W}{L}$ Variable $V_{\rm GS}$ – $V_{\rm TH}$ Constant | $\frac{W}{L}$ Variable $V_{GS} - V_{TH}$ Constant | |--|---|--| | $g_{\rm m} \propto \sqrt{I_{\rm D}}$ | $g_{_{ m m}} \propto I_{_{ m D}}$ | $g_{\rm m} \propto \sqrt{\frac{W}{L}}$ | | $g_{_{\rm IM}} \propto \textit{V}_{\rm GS} \textit{V}_{\rm TH}$ | $g_{_{ m m}} \propto rac{W}{L}$ | $g_{ m m} \propto {1 \over V_{ m GS} - V_{ m TH}}$ | $$g_{\scriptscriptstyle m} = \mu_{\scriptscriptstyle n} C_{\scriptscriptstyle ox} \frac{W}{L} \left(V_{\scriptscriptstyle GS} - V_{\scriptscriptstyle TH} \right) \qquad g_{\scriptscriptstyle m} = \sqrt{2 \mu_{\scriptscriptstyle n} C_{\scriptscriptstyle ox} \frac{W}{L}} I_{\scriptscriptstyle D} \qquad \qquad g_{\scriptscriptstyle m} = \frac{2 I_{\scriptscriptstyle D}}{V_{\scriptscriptstyle CS} - V_{\scriptscriptstyle TH}}$$ - Transconductance is a measure of how strong the drain current changes when the gate voltage changes. - It has three different expressions. EE105 Spring 2008 Lecture 16. Slide 25 Prof. Wu. UC Berkeley # **Velocity Saturation** $$\begin{split} I_{_{D}} &= v_{_{sat}} \cdot Q = v_{_{sat}} \cdot WC_{_{ox}} \left(V_{_{GS}} - V_{_{TH}} \right) \\ g_{_{m}} &= \frac{\partial I_{_{D}}}{\partial V_{_{GS}}} = v_{_{sat}} WC_{_{ox}} \end{split}$$ - Since the channel is very short, it does not take a very large drain voltage to velocity saturate the charge particles. - In velocity saturation, the drain current becomes a linear function of gate voltage, and g_m becomes a function of W. EE105 Spring 2008 Lecture 16, Slide 26 Prof. Wu, UC Berkeley # **Body Effect** $$V_{TH} = V_{TH\,0} + \gamma \left(\sqrt{\left| 2\phi_F \right| + V_{SB}} - \sqrt{\left| 2\phi_F \right|} \right)$$ As the source potential departs from the bulk potential, the threshold voltage changes. EE105 Spring 2008 Lecture 16, Slide 27 Prof. Wu, UC Berkeley # **Large-Signal Models** Based on the value of V_{DS}, MOSFET can be represented with different large-signal models. EE105 Spring 2008 Lecture 16, Slide 28 Prof. Wu, UC Berkeley # Example: Behavior of I_D with V₁ as a Function Since V₁ is connected at the source, as it increases, the current drops. EE105 Spring 2008 Lecture 16, Slide 29 Prof. Wu. UC Berkeley # **Small-Signal Model** - When the bias point is not perturbed significantly, small-signal model can be used to facilitate calculations. - To represent channel-length modulation, an output resistance is inserted into the model. EE105 Spring 2008 Lecture 16, Slide 30 Prof. Wu, UC Berkeley #### **PMOS Transistor** - Just like the PNP transistor in bipolar technology, it is possible to create a MOS device where holes are the dominant carriers. It is called the PMOS transistor. - It behaves like an NMOS device with all the polarities reversed. EE105 Spring 2008 Lecture 16, Slide 31 Prof. Wu, UC Berkeley # **PMOS Equations** $$I_{D,sat} = \frac{1}{2} \mu_{p} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^{2} (1 - \lambda V_{DS})$$ $$I_{D,tri} = \frac{1}{2} \mu_{p} C_{ox} \frac{W}{L} [2(V_{GS} - V_{TH})V_{DS} - V_{DS}^{2}]$$ $$I_{D,sat} = \frac{1}{2} \mu_{p} C_{ox} \frac{W}{L} (|V_{GS}| - |V_{TH}|)^{2} (1 + \lambda |V_{DS}|)$$ $$I_{D,tri} = \frac{1}{2} \mu_{p} C_{ox} \frac{W}{L} [2(|V_{GS}| - |V_{TH}|)|V_{DS}| - V_{DS}^{2}]$$ Lecture 16, Slide 32 EE105 Spring 2008 Prof. Wu, UC Berkeley # **Small-Signal Model of PMOS Device** • The small-signal model of PMOS device is identical to that of NMOS transistor; therefore, R_χ equals R_γ and hence $(1/g_m) | | r_o$. # **CMOS Technology** - It possible to grow an n-well inside a p-substrate to create a technology where both NMOS and PMOS can coexist. - It is known as CMOS, or "Complementary MOS". EE105 Spring 2008 Lecture 16, Slide 34 Prof. Wu, UC Berkeley #### **Comparison of Bipolar and MOS Transistors** | Bipolar Transistor | MOSFET | | |--|---|--| | Exponential Characteristic | Quadratic Characteristic | | | Active: V _{CB} > 0 | Saturation: V _{DS} > V _{GS} - V _{TH} | | | Saturation: V _{CB} < 0 | Triode: V _{DS} < V _{GS} - V _{TH} | | | Finite Base Current | Zero Gate Current | | | Early Effect | Channel-Length Modulation | | | Diffusion Current | Drift Current | | | and the contract of contra | Voltage-Dependent Resistor | | Bipolar devices have a higher gm than MOSFETs for a given bias current due to its exponential IV characteristics. EE105 Spring 2008 Lecture 16, Slide 35 Prof. Wu, UC Berkeley