Lecture 17

OUTLINE

- NMOSFET in ON state (cont'd)
 - Body effect
 - Channel-length modulation
 - Velocity saturation
- NMOSFET in OFF state
- MOSFET models
- PMOSFET

Reading: Finish Chap. 6

Body Effect Example

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\varphi_B + V_{SB}} - \sqrt{2\varphi_B} \right)$$
 where $\gamma = \frac{\sqrt{2qN_A \varepsilon_{Si}}}{C_{or}}$

Example:

Typical values

$$\gamma \sim 0.5$$

$$\varphi_B = 0.48 \text{V for } N_A = 10^{18} \text{cm}^{-3}$$

(substrate doping)

A substrate bias of $V_{SB} = 1V$ produce a V_{TH} shift of 0.2V

Channel-Length Modulation

- The pinch-off point moves toward the source as $V_{\rm DS}$ increases.
- \rightarrow The length of the inversion-layer channel becomes shorter with increasing $V_{\rm DS}$.
- $\rightarrow I_D$ increases (slightly) with increasing V_{Dc} in the saturation region of operation.

$$\frac{1}{2} \mu_{\rm n} c_{\rm ox} \frac{W}{L} (v_{\rm GS} - v_{\rm TH})^2$$

$$I_{Dsat} \propto \frac{1}{L - \Delta L} \cong \frac{1}{L} \left(1 + \frac{\Delta L}{L} \right)$$

$$\Delta L \propto \left(V_{DS} - V_{DSsat} \right)$$

$$V_{\rm GS} - V_{\rm TH}$$

$$I_{D,sat} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \left[1 + \lambda (V_{DS} - V_{D,sat}) \right]$$

 λ : channel length modulation coefficient

* Note: in Razavi:
$$I_{D,sat} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 [1 + \lambda V_{DS}]$$

EE105 Spring 2008 Lecture 17, Slide 3 Prof. Wu, UC Berkeley

λ and L

• The effect of channel-length modulation is less for a longchannel MOSFET than for a short-channel MOSFET.

$$\lambda \propto \frac{1}{L}$$
 \Rightarrow short channel MOSFET has larger λ

EE105 Spring 2008 Lecture 17, Slide 4 Prof. Wu, UC Berkeley

Velocity Saturation

- In state-of-the-art MOSFETs, the channel is very short (<0.1 μ m); hence the lateral electric field is very high and carrier drift velocities can reach their saturation levels.
 - The electric field magnitude at which the carrier velocity saturates is $E_{\rm sat}$.

$$v_{sat} = \begin{cases} 8 \times 10^6 \text{ cm/s for electrons in Si} \\ 6 \times 10^6 \text{ cm/s for holes in Si} \end{cases}$$

$$\begin{cases} \text{NMOS: } \mu_n \approx 250 \text{ cm}^2/\text{V-s} \implies E_{sat} \approx 30,000 \text{ V/cm} \\ \text{PMOS: } \mu_n \approx 80 \text{ cm}^2/\text{V-s} \implies E_{sat} \approx 80,000 \text{ V/cm} \end{cases}$$

$$\text{For } L = 0.1 \text{ } \mu\text{m}$$

$$\begin{cases} V_{D,sat} = 0.3 \text{ V for NMOS} \\ V_{D,sat} = 0.8 \text{ V for PMOS} \end{cases}$$

Impact of Velocity Saturation

- Recall that $I_D = WQ_{inv}(y)v(y)$
- If $V_{DS} > E_{sat} \times L$, the carrier velocity will saturate and hence the drain current will saturate:

$$I_{D,sat} = WQ_{inv}v_{sat} = WC_{ox}(V_{GS} - V_{TH})v_{sat}$$

- $I_{D,sat}$ is proportional to $V_{GS}-V_{TH}$ rather than $(V_{GS}-V_{TH})^2$
- I_{D,sat} is not dependent on L
- I_{D,sat} is dependent on W

Short-Channel MOSFET I_D-V_{DS}

P. Bai et al. (Intel Corp.), Int'l Electron Devices Meeting, 2004.

 I_{DS} - V_{DS} for 35nm gate lengths

- $I_{D,sat}$ is proportional to V_{GS} - V_{TH} rather than $(V_{GS}$ - $V_{TH})^2$
- $V_{
 m D,sat}$ is smaller than $V_{
 m GS}$ - $V_{
 m TH}$
- Channel-length modulation is apparent (?)

Drain Induced Barrier Lowering (DIBL)

- In a **short-channel MOSFET**, the source & drain regions each "support" a significant fraction of the total channel depletion charge $Q_{dep} \times W \times L$
 - \rightarrow V_{TH} is lower than for a long-channel MOSFET

- As the drain voltage increases, the reverse bias on the body-drain PN junction increases, and hence the drain depletion region widens.
 - \rightarrow V_{TH} decreases with increasing drain bias. (The barrier to carrier diffusion from the source into the channel is reduced.)
 - \rightarrow $I_{\rm D}$ increases with increasing drain bias.

EE105 Spring 2008 Lecture 17, Slide 8 Prof. Wu, UC Berkeley

NMOSFET in OFF State

- We had previously assumed that there is no channel current when $V_{GS} < V_{TH}$. This is incorrect!
- As $V_{\rm GS}$ is reduced below $V_{\rm TH}$ (towards 0 V), the potential barrier to carrier diffusion from the source into the channel is increased. I_D becomes limited by carrier diffusion into the channel, rather than by carrier drift through the channel.

(This is similar to the case of a PN junction diode!)

 $\rightarrow I_D$ varies exponentially with the potential barrier height at the source, which varies directly with the channel potential.

EE105 Spring 2008 Lecture 17, Slide 9 Prof. Wu, UC Berkeley

Sub-Threshold Leakage Current

Recall that, in the depletion (sub-threshold) region of operation, the channel potential is capacitively coupled to the gate potential. A change in gate voltage (ΔV_{GS}) results in a change in channel voltage (ΔV_{CS}):

$$\Delta V_{CS} = \Delta V_{GS} \times \left(\frac{C_{ox}}{C_{ox} + C_{dep}}\right) \equiv \Delta V_{GS} / m \quad ; \quad m = 1 + \frac{C_{dep}}{C_{ox}} > 1$$

Therefore, the sub-threshold current ($I_{D.subth}$) decreases exponentially with linearly decreasing V_{GS}/m

Sub-threshold swing:

$$S = \left(\frac{d(\log_{10} I_{DS})}{dV_{GS}}\right)^{-1}$$

$$S = mV_T \ln(10) > 60 \text{mV/dec}$$

Prof. Wu, UC Berkeley

Short-Channel MOSFET I_D-V_{GS}

P. Bai et al. (Intel Corp.), Int'l Electron Devices Meeting, 2004.

Sub-threshold curves (I_{DS}-V_{GS}) for 35nm gate lengths

V_{TH} Design Trade-Off

• Low V_{TH} is desirable for high ON-state current:

$$I_{\text{D,sat}} \propto (V_{\text{DD}} - V_{\text{TH}})^{\eta}$$
 $1 < \eta < 2$

• But high V_{TH} is needed for low OFF-state current:

EE105 Spring 2008 Lecture 17, Slide 12 Prof. Wu, UC Berkeley

MOSFET Large-Signal Models $(V_{GS} > V_{TH})$

Depending on the value of V_{DS} , the MOSFET can be represented with different large-signal models.

$$R_{ON} = \frac{1}{\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})}$$

Triode Region

$$I_{D,tri} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) - \frac{V_{DS}}{2} \right] V_{DS}$$

Saturation Region

$$V_{\rm DS} > V_{\rm D,sat}$$

$$R_{ON} = \frac{1}{\mu_{n}C_{ox}\frac{W}{L}(V_{GS} - V_{TH})} I_{D,tri} = \mu_{n}C_{ox}\frac{W}{L} \left[(V_{GS} - V_{TH}) - \frac{V_{DS}}{2} \right] V_{DS} I_{D,sat} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L} (V_{GS} - V_{TH})^{2} \left[1 + \lambda (V_{DS} - V_{D,sat}) \right] Or I_{D,sat} = v_{sat}WC_{ox}(V_{GS} - V_{TH}) \left[1 + \lambda (V_{DS} - V_{D,sat}) \right]$$

$$I_{D,sat} = v_{sat}WC_{ox}(V_{GS} - V_{TH})[1 + \lambda(V_{DS} - V_{D,sat})]$$

EE105 Spring 2008 Lecture 17, Slide 13 Prof. Wu, UC Berkeley

MOSFET Transconductance, $g_{\rm m}$

• Transconductance (g_m) is a measure of how much the drain current changes when the gate voltage changes.

$$g_m \equiv \frac{\partial I_D}{\partial V_{GS}}$$

- For amplifier applications, the MOSFET is usually operating in the saturation region.
 - For a long-channel MOSFET:

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \{ 1 + \lambda (V_{DS} - V_{D,sat}) \} = \frac{2I_{D}}{V_{GS} - V_{TH}}$$

— For a short-channel MOSFET:

$$g_{m} = v_{sat}WC_{ox}\left\{1 + \lambda\left(V_{DS} - V_{D,sat}\right)\right\} = \frac{I_{D}}{V_{GS} - V_{TH}}$$

MOSFET Small-Signal Model

(Saturation Region of Operation)

• The effect of channel-length modulation or DIBL (which cause $I_{\rm D}$ to increase linearly with $V_{\rm DS}$) is modeled by the transistor output resistance, $r_{\rm o}$.

$$r_o \equiv \frac{\partial V_{DS}}{\partial I_D} \approx \frac{1}{\lambda I_D}$$

Derivation of Small-Signal Model

(Long-Channel MOSFET, Saturation Region)

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^{2} \left[1 + \lambda (V_{DS} - V_{D,sat}) \right]$$

$$i_{d} = \frac{\partial I_{D}}{\partial V_{GS}} v_{gs} + \frac{\partial I_{D}}{\partial V_{BS}} v_{bs} + \frac{\partial I_{D}}{\partial V_{DS}} v_{ds} \equiv g_{m} v_{gs} + g_{mb} v_{bs} + \frac{1}{r_{o}} v_{ds}$$

EE105 Spring 2008 Lecture 17, Slide 16 Prof. Wu, UC Berkeley

PMOS Transistor

 A p-channel MOSFET behaves similarly to an n-channel MOSFET, except the polarities for I_D and V_{GS} are reversed.

Circuit symbol

- The small-signal model for a PMOSFET is the same as that for an NMOSFET.
 - The values of $g_{\rm m}$ and $r_{\rm o}$ will be different for a PMOSFET vs. an NMOSFET, since mobility & saturation velocity are different for holes vs. electrons.

PMOS *I-V* Equations

$$I_{D,tri} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} \Big[2 (V_{SG} - V_{TH}) V_{DS} - V_{DS}^2 \Big] \qquad DS \leftrightarrow SG$$

$$= \frac{1}{2} \mu_p C_{ox} \frac{W}{L} \Big[2 (|V_{GS}| - |V_{TH}|) |V_{DS}| - V_{DS}^2 \Big]$$

Long Channel:

$$\begin{split} I_{D,sat} &= \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{SG} - V_{TH})^2 \Big[1 + \lambda (V_{SD} - V_{SD,sat}) \Big] \\ &= \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (|V_{GS}| - |V_{TH}|)^2 \Big[1 + \lambda (|V_{DS}| - |V_{D,sat}|) \Big] \end{split}$$

Short Channel:

$$\begin{split} I_{D,sat} &= v_{sat} W C_{ox} (V_{SG} - V_{TH}) \Big[1 + \lambda \left(V_{SD} - V_{SD,sat} \right) \Big] \\ &= v_{sat} W C_{ox} (\left| V_{SG} \right| - \left| V_{TH} \right|) \Big[1 + \lambda \left(\left| V_{DS} \right| - \left| V_{D,sat} \right| \right) \Big] \end{split}$$

Note:
$$V_{GS} < 0, V_{DS} < 0, V_{D,sat} < 0, V_{TH} < 0$$
 in PMOS

EE105 Spring 2008 Lecture 17, Slide 18 Prof. Wu, UC Berkeley

CMOS Technology

- It possible to form deep n-type regions ("well") within a p-type substrate to allow PMOSFETs and NMOSFETs to be co-fabricated on a single substrate.
- This is referred to as CMOS ("Complementary MOS") technology.

Schematic cross-section of CMOS devices

Comparison of BJT and MOSFET

• The BJT can achieve much higher g_m than a MOSFET, for a given bias current, due to its exponential *I-V* characteristic.

(Long-Channel)

Bipolar Transistor	MOSFET
Exponential Characteristic	Quadratic Characteristic
Active: V _{CB} > 0	Saturation: $V_{DS} > V_{GS} - V_{TH}$
Saturation: $V_{CB} < 0$	Triode: V _{DS} < V _{GS} - V _{TH}
Finite Base Current	Zero Gate Current
Early Effect	Channel-Length Modulation
Diffusion Current	Drift Current
-	Voltage-Dependent Resistor

(Short-Channel)

MOSFET

Linear

$$V_{GS} > V_{Dsat}$$
 ; $V_{Dsat} = E_{sat}L$ $V_{GS} < V_{Dsat}$