Lecture 19

OUTLINE

- Common-gate stage
- Source follower

• Reading: Chap. 7.3-7.4

Common-Gate Stage

 Common-gate stage is similar to common-base stage: a rise in input causes a rise in output. So the gain is positive.

EE105 Spring 2008 Lecture 19, Slide 2 Prof. Wu, UC Berkeley

Signal Levels in CG Stage

• In order to maintain M1 in saturation, the signal swing at V_{out} cannot fall below V_b-V_{TH}

EE105 Spring 2008 Lecture 19, Slide 3 Prof. Wu, UC Berkeley

I/O Impedances of CG Stage

• The input and output impedances of CG stage are similar to those of CB stage.

EE105 Spring 2008 Lecture 19, Slide 4 Prof. Wu, UC Berkeley

CG Stage with Source Resistance

 When a source resistance is present, the voltage gain is equal to that of a CS stage with degeneration, only positive.

EE105 Spring 2008 Lecture 19, Slide 5 Prof. Wu, UC Berkeley

Generalized CG Behavior

- When a gate resistance is present it does not affect the gain and I/O impedances since there is no potential drop across it (at low frequencies).
- The output impedance of a CG stage with source resistance is identical to that of CS stage with degeneration.

EE105 Spring 2008 Lecture 19, Slide 6 Prof. Wu, UC Berkeley

Example of CG Stage

$$\frac{v_{out}}{v_{in}} = \frac{g_{m1}R_D}{1 + (g_{m1} + g_{m2})R_S}$$

$$R_{out} \approx \left[g_{m1} r_{O1} \left(\frac{1}{g_{m2}} \parallel R_S \right) + r_{O1} \right] \parallel R_D$$

 Diode-connected M2 acts as a resistor to provide the bias current.

EE105 Spring 2008 Lecture 19, Slide 7 Prof. Wu, UC Berkeley

CG Stage with Biasing

R₁ and R₂ provide gate bias voltage, and R₃ provides a path for DC bias current of M₁ to flow to ground.

EE105 Spring 2008 Lecture 19, Slide 8 Prof. Wu, UC Berkeley

Source Follower Stage

EE105 Spring 2008 Lecture 19, Slide 9 Prof. Wu, UC Berkeley

Source Follower Core

• Similar to the emitter follower, the source follower can be analyzed as a resistor divider.

EE105 Spring 2008 Lecture 19, Slide 10 Prof. Wu, UC Berkeley

Source Follower Example

In this example, M₂ acts as a current source.

Output Resistance of Source Follower

• The output impedance of a source follower is relatively low, whereas the input impedance is infinite (at low frequencies); thus, a good candidate as a buffer.

EE105 Spring 2008 Lecture 19, Slide 12 Prof. Wu, UC Berkeley

Source Follower with Biasing

- R_G sets the gate voltage to V_{DD}, whereas R_S sets the drain current
- The quadratic equation above can be solved for I_D

EE105 Spring 2008 Lecture 19, Slide 13 Prof. Wu, UC Berkeley

Supply-Independent Biasing

If R_s is replaced by a current source, drain current I_D becomes independent of supply voltage.

EE105 Spring 2008 Lecture 19, Slide 14 Prof. Wu, UC Berkeley