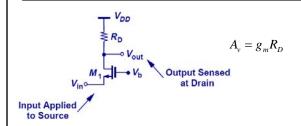
Lecture 19

OUTLINE

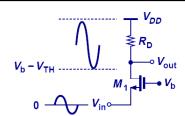

- Common-gate stage
- Source follower
- Reading: Chap. 7.3-7.4

EE105 Spring 2008

Lecture 19, Slide

Prof. Wu, UC Berkeley

Common-Gate Stage

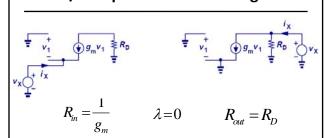


 Common-gate stage is similar to common-base stage: a rise in input causes a rise in output. So the gain is positive.

EE105 Spring 2008 Lecture 19, Slide 2

Slide 2 Prof. Wu, UC Berkele

Signal Levels in CG Stage

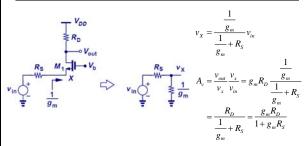

• In order to maintain M1 in saturation, the signal swing at V_{out} cannot fall below V_b-V_{TH}

EE105 Spring 2008

Lecture 19, Slide 3

Prof. Wu, UC Berkeley

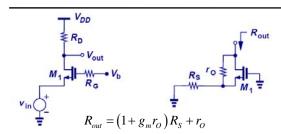
I/O Impedances of CG Stage


 The input and output impedances of CG stage are similar to those of CB stage.

EE105 Spring 2008

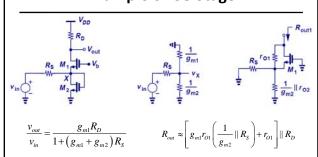
Lecture 19, Slide 4

Prof. Wu, UC Berkeley


CG Stage with Source Resistance

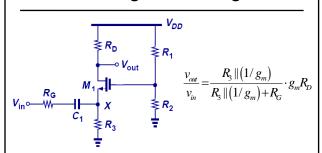
 When a source resistance is present, the voltage gain is equal to that of a CS stage with degeneration, only positive.

EE105 Spring 2008 Lecture 19, Slide 5 Prof. Wu


Generalized CG Behavior

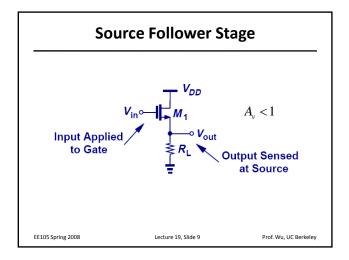
- When a gate resistance is present it does not affect the gain and I/O impedances since there is no potential drop across it (at low frequencies).
- The output impedance of a CG stage with source resistance is identical to that of CS stage with degeneration.

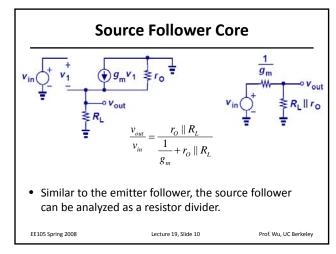
EE105 Spring 2008 Lecture 19, Slide 6 Prof. Wu, UC Berkeley

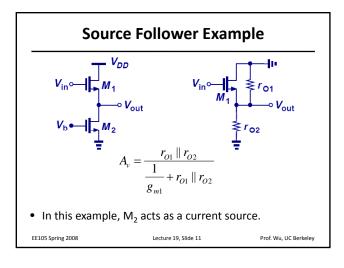

Example of CG Stage

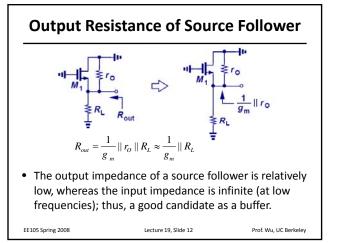
Diode-connected M2 acts as a resistor to provide the bias current.

EE105 Spring 2008 Lecture 19, Slide 7 Prof. Wu, UC Berkeley

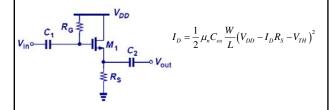

CG Stage with Biasing



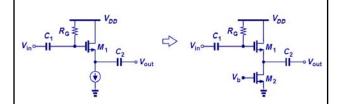

R₁ and R₂ provide gate bias voltage, and R₃ provides a
path for DC bias current of M₁ to flow to ground.


EE105 Spring 2008 Lecture 19, Slide 8 Prof. Wu, UC Berkeley

EE105 Fall 2007



EE105 Fall 2007


Source Follower with Biasing

- R_G sets the gate voltage to V_{DD} , whereas R_S sets the drain current
- $\bullet\;$ The quadratic equation above can be solved for I_D

EE105 Spring 2008 Lecture 19, Slide 13 Prof. Wu, UC Berkel

Supply-Independent Biasing

If R_s is replaced by a current source, drain current I_D becomes independent of supply voltage.

EE105 Spring 2008 Lecture 19, Slide 14 Prof. Wu, UC Berkeley

EE105 Fall 2007 4