Lecture 19

OUTLINE

- Common-gate stage
- Source follower
- Reading: Chap. 7.3-7.4

EE105 Spring 2008

Lecture 19, Slide 1

Prof. Wu, UC Berkeley

Common-Gate Stage

 Common-gate stage is similar to common-base stage: a rise in input causes a rise in output. So the gain is positive.

EE105 Spring 2008

Lecture 19, Slide 2 Prof. Wu, UC Berkeley

Signal Levels in CG Stage

 In order to maintain M1 in saturation, the signal swing at V_{out} cannot fall below V_b-V_{TH}

EE105 Spring 2008

Lecture 19, Slide 3

Prof. Wu, UC Berkeley

I/O Impedances of CG Stage

• The input and output impedances of CG stage are similar to those of CB stage.

EE105 Spring 2008 Lecture 19, Slide 4

CG Stage with Source Resistance

 When a source resistance is present, the voltage gain is equal to that of a CS stage with degeneration, only positive.

EE105 Spring 2008

Lecture 19, Slide 5

Prof. Wu, UC Berkeley

Generalized CG Behavior

- When a gate resistance is present it does not affect the gain and I/O impedances since there is no potential drop across it (at low frequencies).
- The output impedance of a CG stage with source resistance is identical to that of CS stage with degeneration.

EE105 Spring 2008

Lecture 19, Slide 6

Prof. Wu, UC Berkeley

Prof. Wu. UC Berkeley

• Diode-connected M2 acts as a resistor to provide the bias current.

EE105 Spring 2008 Lecture 19, Slide 7 Prof. Wu, UC Berkeley

EE105 Fall 2007

Source Follower with Biasing

- R_{G} sets the gate voltage to $V_{\text{DD}}\text{,}$ whereas R_{S} sets the drain current
- The quadratic equation above can be solved for I_D

Prof. Wu, UC Berkeley

EE105 Spring 2008 Lecture 19, Slide 13

EE105 Fall 2007