Lecture 1

OUTLINE

- Basic Semiconductor Physics
 - Semiconductors
 - Intrinsic (undoped) silicon
 - Doping
 - Carrier concentrations

Reading: Chapter 2.1

EE105 Spring 2008

Lecture 1. Slide 1

What is a Semiconductor?

- Low resistivity => "conductor"
- High resistivity => "insulator"
- Intermediate resistivity => "semiconductor"
 - conductivity lies between that of conductors and insulators
 - generally crystalline in structure for IC devices
 - In recent years, however, non-crystalline semiconductors have become commercially very important

polycrystalline amorphous crystalline

EE105 Spring 2008

Lecture 1. Slide 2

Semiconductor Materials

Silicon

- Atomic density: 5 x 10²² atoms/cm³
- Si has four valence electrons. Therefore, it can form covalent bonds with four of its nearest neighbors.
- When temperature goes up, electrons can become free to move about the Si lattice.

Electronic Properties of Si

- Silicon is a semiconductor material.
 - Pure Si has a relatively high electrical resistivity at room temperature.
- There are 2 types of mobile charge-carriers in Si:
 - Conduction electrons are negatively charged;
 - Holes are positively charged.
- The concentration (#/cm³) of conduction electrons & holes in a semiconductor can be modulated in several ways:
 - 1. by adding special impurity atoms (dopants)
 - 2. by applying an electric field
 - 3. by changing the temperature
 - 4. by irradiation

EE105 Spring 2008

Electron-Hole Pair Generation

- When a conduction electron is thermally generated, a "hole" is also generated.
- A hole is associated with a positive charge, and is free to move about the Si lattice as well.

Lecture 1, Slide 5

EE105 Spring 2008

Lecture 1, Slide 6

Carrier Concentrations in Intrinsic Si

- The "band-gap energy" E_g is the amount of energy needed to remove an electron from a covalent bond.
- The concentration of conduction electrons in intrinsic silicon, n_i, depends exponentially on E_g and the absolute temperature (T):

$$n_i = 5.2 \times 10^{15} T^{3/2} \exp{\frac{-E_g}{2kT}} electrons / cm^3$$

 $n_i \cong 1 \times 10^{10} electrons / cm^3$ at 300K $n_i \cong 1 \times 10^{15} electrons / cm^3$ at 600K

EE105 Spring 2008

Lecture 1, Slide 7

Doping (N type)

- Si can be "doped" with other elements to change its electrical properties.
- For example, if Si is doped with phosphorus (P), each
 P atom can contribute a conduction electron, so that
 the Si lattice has more electrons than holes, i.e. it
 becomes "N type":

n = conduction electron concentration

EE105 Spring 2008

Lecture 1. Slide 8

Doping (P type)

 If Si is doped with Boron (B), each B atom can contribute a hole, so that the Si lattice has more holes than electrons, i.e. it becomes "P type":

Notation:

p = hole concentration

EE105 Spring 2008

Lecture 1, Slide 9

Summary of Charge Carriers

Electron and Hole Concentrations

 Under thermal equilibrium conditions, the product of the conduction-electron density and the hole density is ALWAYS equal to the square of n_i:

$$np = n_i^2$$

• This is called mass-action law

N-type material

$$n \approx N_D$$
$$p \approx \frac{n_i^2}{N}$$

P-type material

$$p \approx N_A$$

$$n \approx \frac{n_i^2}{N_A}$$

EE105 Spring 2008 Lecture 1, Slide 11

Terminology

 $\underline{\text{donor}}$: impurity atom that increases n

acceptor: impurity atom that increases p

N-type material: contains more electrons than holes P-type material: contains more holes than electrons

<u>majority carrier</u>: the most abundant carrier minority carrier: the least abundant carrier

<u>intrinsic</u> semiconductor: $n = p = n_i$

extrinsic semiconductor: doped semiconductor

EE105 Spring 2008 Lecture 1, Slide 12

Summary

- The band gap energy is the energy required to free an electron from a covalent bond.
 - $-E_g$ for Si at 300K = 1.12eV
- In a pure Si crystal, conduction electrons and holes are formed in pairs.
 - Holes can be considered as positively charged mobile particles which exist inside a semiconductor.
 - Both holes and electrons can conduct current.
- Substitutional dopants in Si:
 - Group-V elements (*donors*) contribute conduction electrons
 - Group-III elements (acceptors) contribute holes
 - Very low ionization energies (<50 meV)

EE105 Spring 2008

Lecture 1, Slide 13