Lecture 2

OUTLINE

- Basic Semiconductor Physics (cont'd)
 - Carrier drift and diffusion
- PN Junction Diodes
 - Electrostatics
 - Capacitance

Reading: Chapter 2.1-2.2

Dopant Compensation

- An N-type semiconductor can be converted into Ptype material by counter-doping it with acceptors such that $N_A > N_D$.
- A compensated semiconductor material has both acceptors and donors.

N-type material
$$(N_{D} > N_{A})$$

$$n \approx N_{D} - N_{A}$$

$$p \approx \frac{n_{i}^{2}}{N_{D} - N_{A}}$$

P-type material
$$(N_{A} > N_{D})$$

$$p \approx N_{A} - N_{D}$$

$$n \approx \frac{n_{i}^{2}}{N_{A} - N_{D}}$$

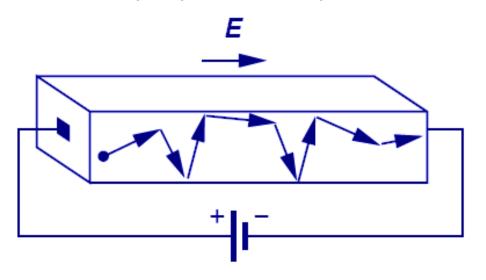
Types of Charge in a Semiconductor

- Negative charges:
 - Conduction electrons (density = n)
 - Ionized acceptor atoms (density = N_A)
- Positive charges:
 - Holes (density = p)
 - Ionized donor atoms (density = N_D)
- The net charge density (C/cm³) in a semiconductor is

$$\rho = q(p - n + N_D - N_A)$$

Carrier Drift

- The process in which charged particles move because of an electric field is called *drift*.
- Charged particles within a semiconductor move with an average velocity proportional to the electric field.
 - The proportionality constant is the carrier mobility.



Hole velocity
$$\overset{\rightarrow}{v_{_h}}=\mu_{_p}\vec{E}$$

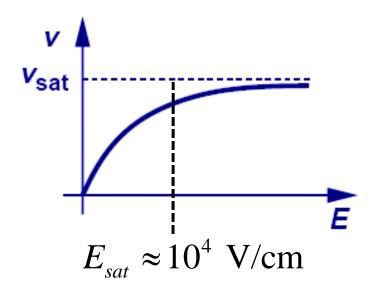
Electron velocity
$$\overset{\rightarrow}{v_e} = -\mu_n \vec{E}$$

Notation:

 $\mu_{p} \equiv \text{hole mobility (cm}^{2}/\text{V·s})$ $\mu_{n} \equiv \text{electron mobility (cm}^{2}/\text{V·s})$

Velocity Saturation

• In reality, carrier velocities saturate at an upper limit, called the *saturation velocity* (v_{sat}).



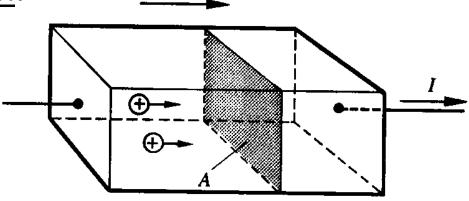
$$\mu = \frac{\mu_0}{1 + bE}$$

$$v_{sat} = \frac{\mu_0}{b}$$

$$v = \frac{\mu_0}{1 + \frac{\mu_0 E}{v}}$$

Drift Current

 Drift current is proportional to the carrier velocity and carrier concentration:



 $v_h t A = volume from which all holes cross plane in time t$

 $p v_h tA = \#$ of holes crossing plane in time t

 $q p v_h t A =$ charge crossing plane in time t

 $q p v_h A = \text{charge crossing plane per unit time} = \text{hole current}$

 \rightarrow Hole current per unit area (i.e. current density) $J_{p,drift} = q p v_h$

EE105 Spring 2008 Lecture 2, Slide 6 Prof. Wu, UC Berkeley

Conductivity and Resistivity

• In a semiconductor, both electrons and holes conduct current:

$$\begin{split} \boldsymbol{J}_{p,drift} &= q p \mu_p E \qquad \boldsymbol{J}_{n,drift} = -q n (-\mu_n E) \\ \boldsymbol{J}_{tot,drift} &= \boldsymbol{J}_{p,drift} + \boldsymbol{J}_{n,drift} = q p \mu_p E + q n \mu_n E \\ \boldsymbol{J}_{tot,drift} &= q (p \mu_p + n \mu_n) E \equiv \sigma E \end{split}$$

Conductivity

$$\sigma \equiv qp\mu_p + qn\mu_n \quad \text{[unit: mho/cm = S/cm]}$$

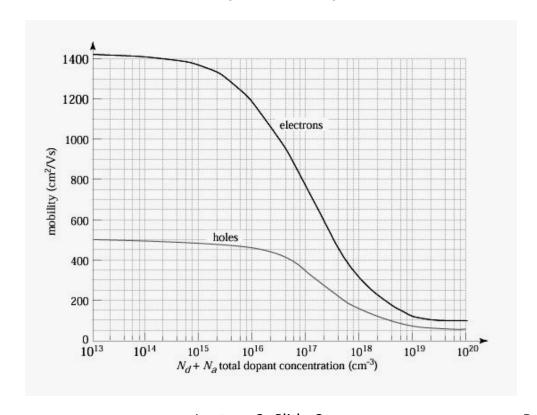
Resistivity

$$\rho \equiv \frac{1}{\sigma}$$
 [Unit: Ω -cm]

• Typical resistivity range for Si: $10^{-3} \sim 10^3 \Omega$ -cm

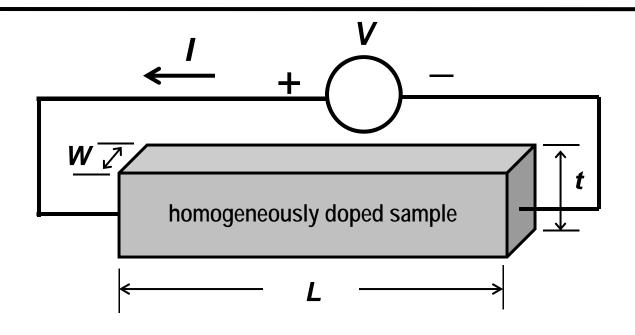
Resistivity Example

 Estimate the resistivity of a Si sample doped with phosphorus to a concentration of 10¹⁵ cm⁻³ and boron to a concentration of 10¹⁷ cm⁻³. The electron mobility and hole mobility are 800 cm²/Vs and 300 cm²/Vs, respectively.



EE105 Spring 2008 Lecture 2, Slide 8 Prof. Wu, UC Berkeley

Electrical Resistance



Resistance

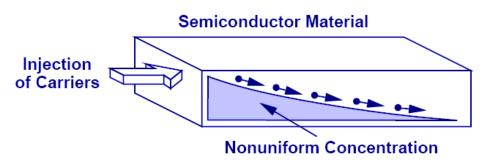
$$R \equiv \frac{V}{I} = \rho \frac{L}{Wt}$$

(Unit: ohms)

where ρ is the resistivity

Carrier Diffusion

- Due to thermally induced random motion, mobile particles tend to move from a region of high concentration to a region of low concentration.
 - Analogy: ink droplet in water
- Current flow due to mobile charge diffusion is proportional to the carrier concentration gradient.
 - The proportionality constant is the diffusion constant.



$$J_p = -qD_p \frac{dp}{dx}$$

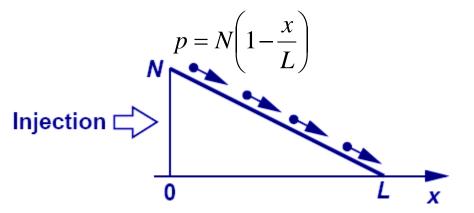
Notation:

 $D_{\rm p} \equiv \text{hole diffusion constant (cm}^2/\text{s})$

 $D_n \equiv \text{electron diffusion constant (cm}^2/\text{s})$

Diffusion Examples

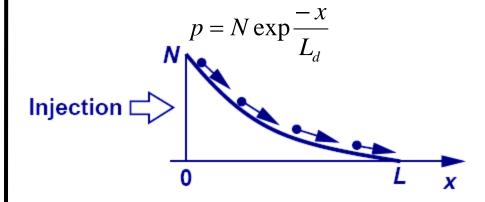
- Linear concentration profile
 - → constant diffusion current



$$J_{p,diff} = -qD_{p} \frac{R}{Q}$$

$$= qD_{p} \frac{N}{L}$$

- Non-linear concentration profile
 - → varying diffusion current



$$J_{p,diff} = -qD_{p} \frac{dp}{dx}$$

$$= \frac{qD_{p}N}{L_{d}} \exp \frac{-x}{L_{d}}$$

Diffusion Current

 Diffusion current within a semiconductor consists of hole and electron components:

$$J_{p,diff} = -qD_{p} \frac{dp}{dx} \qquad J_{n,diff} = qD_{n} \frac{dn}{dx}$$

$$J_{tot,diff} = q(D_{n} \frac{dn}{dx} - D_{p} \frac{dp}{dx})$$

 The total current flowing in a semiconductor is the sum of drift current and diffusion current:

$$oxed{J_{tot} = J_{p,dri\!f\!t} + J_{n,dri\!f\!t} + J_{p,di\!f\!f} + J_{n,di\!f\!f}}$$

The Einstein Relation

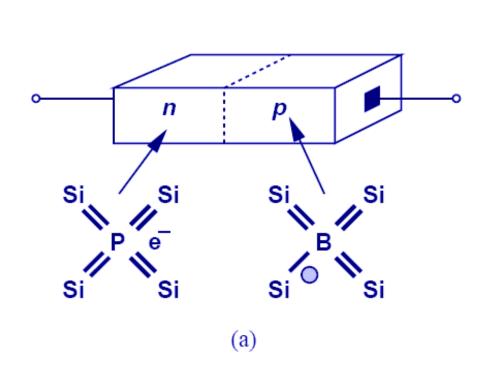
 The characteristic constants for drift and diffusion are related:

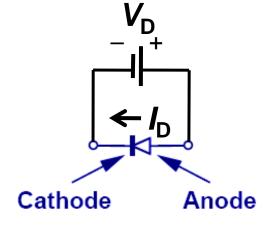
$$\frac{D}{\mu} = \frac{kT}{q}$$

- Note that $\frac{kT}{q} \cong 26 \mathrm{mV}$ at room temperature (300K)
 - This is often referred to as the "thermal voltage".

The PN Junction Diode

 When a P-type semiconductor region and an N-type semiconductor region are in contact, a PN junction diode is formed.





(b)

Diode Operating Regions

 In order to understand the operation of a diode, it is necessary to study its behavior in three operation regions: equilibrium, reverse bias, and forward bias.

$$V_{\rm D}=0$$

PN Junction in Equilibrium

Depletion Region

Built-in Potential

$$V_{\rm D} < 0$$

PN Junction Under Reverse Bias

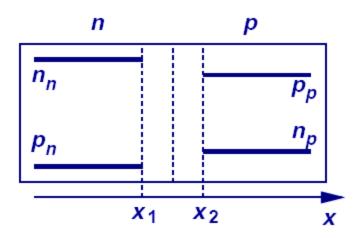
 $V_{\rm D} > 0$

PN Junction Under Forward Bias

I/V Characteristics

Carrier Diffusion across the Junction

 Because of the difference in hole and electron concentrations on each side of the junction, carriers diffuse across the junction:



Notation:

 $n_n \equiv$ electron concentration on N-type side (cm⁻³)

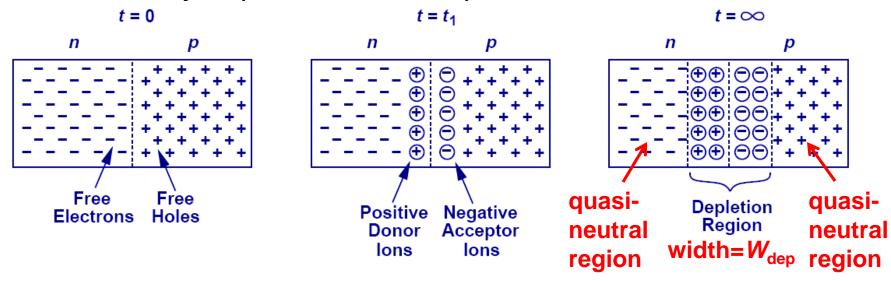
 $p_n = \text{hole concentration on N-type side (cm}^{-3})$

 $p_p \equiv$ hole concentration on P-type side (cm⁻³)

 $n_p \equiv$ electron concentration on P-type side (cm⁻³)

Depletion Region

- As conduction electrons and holes diffuse across the junction, they leave behind ionized dopants. Thus, a region that is depleted of mobile carriers is formed.
 - The charge density in the depletion region is not zero.
 - The carriers which diffuse across the junction recombine with majority carriers, i.e. they are annihilated.

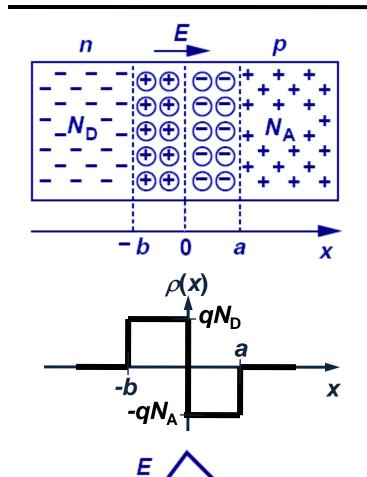


EE105 Spring 2008

Lecture 2, Slide 17

Prof. Wu, UC Berkeley

The Depletion Approximation



In the depletion region on the **N side**:

$$\frac{dE}{dx} = \frac{\rho}{\varepsilon_{si}} = \frac{qN_D}{\varepsilon_{si}}$$
 Gauss's Law

$$E = \frac{qN_D}{\varepsilon_{si}}(x+b) \qquad \varepsilon_{si} = 10^{12} \text{ F/cm}$$

In the depletion region on the **P side**:

$$\frac{dE}{dx} = \frac{\rho}{\varepsilon_{si}} = \frac{-qN_A}{\varepsilon_{si}}$$

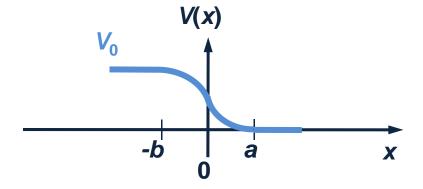
$$E = \frac{qN_A}{\varepsilon_{si}} (a - x)$$

$$aN_A = bN_D$$

Potential Distribution

- In the depletion region, the electric potential is quadratic since the electric field is linear
- The potential difference between the N and the P side is called built-in potential, V_0

$$E = -\frac{dV}{dx}$$
$$V = -\int E \cdot dx$$



PN Junction in Equilibrium

 In equilibrium, the drift and diffusion components of current are balanced; therefore the net current flowing across the junction is zero.

$$egin{aligned} J_{p,dri\!f\!f} &= -J_{p,di\!f\!f} \ J_{n,dri\!f\!f} &= -J_{n,di\!f\!f} \end{aligned}$$

$$\boldsymbol{J}_{tot} = \boldsymbol{J}_{p,drift} + \boldsymbol{J}_{n,drift} + \boldsymbol{J}_{p,diff} + \boldsymbol{J}_{n,diff} = 0$$

Built-in Potential, V_0

 Because of the electric field in the depletion region, there exists a potential drop across the junction:

$$qp\mu_p E = qD_p \frac{dp}{dx} \implies p\mu_p \left(-\frac{dV}{dx}\right) = D_p \frac{dp}{dx}$$

$$\Rightarrow -\mu_p \int_{-b}^a dV = D_p \int_{p_n}^{p_p} \frac{dp}{p}$$

$$\Rightarrow V(-b) - V(a) = \frac{D_p}{\mu_p} \ln \frac{p_p}{p_n} = \frac{kT}{q} \ln \frac{N_A}{\left(n_i^2 / N_D\right)}$$

$$V_0 = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$$

(Unit: Volts)

Built-In Potential Example

Estimate the built-in potential for PN junction below.

$$N_{D} = 10^{18} \text{ cm}^{-3}$$
 $N_{A} = 10^{15} \text{ cm}^{-3}$

$$V_0 = \frac{kT}{q} \ln \left(\frac{N_D N_A}{n_i^2} \right) = (26 \text{mV}) \ln \left(\frac{10^{18} 10^{15}}{10^{20}} \right) = (26 \text{mV}) \ln \left(10^{13} \right)$$

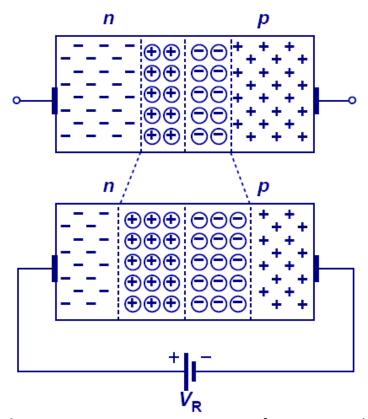
Note:
$$\frac{kT}{q}\ln(10) \cong 26\text{mV} \times 2.3 \cong 60\text{mV}$$

$$V_0 = 60 \text{mV} \times 13 = 780 \text{mV}$$

PN Junction under Reverse Bias

 A reverse bias increases the potential drop across the junction. As a result, the magnitude of the electric field increases and the width of the depletion region widens.

$$W_{dep} = \sqrt{\frac{2\varepsilon_{si}}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 + V_R)}$$



EE105 Spring 2008 Lecture 2, Slide 23 Prof. Wu, UC Berkeley

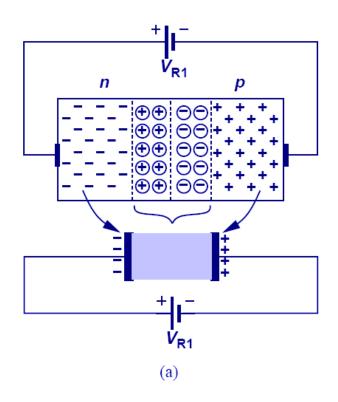
Diode Current under Reverse Bias

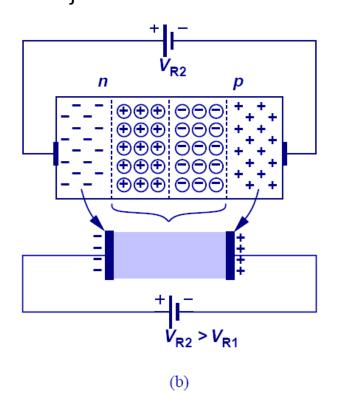
- In equilibrium, the built-in potential effectively prevents carriers from diffusing across the junction.
- Under reverse bias, the potential drop across the junction increases; therefore, negligible diffusion current flows. A very small drift current flows, limited by the rate at which minority carriers diffuse from the quasi-neutral regions into the depletion region.

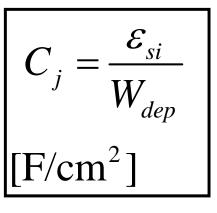
EE105 Spring 2008 Lecture 2, Slide 24 Prof. Wu, UC Berkeley

PN Junction Capacitance

• A reverse-biased PN junction can be viewed as a capacitor. The depletion width $(W_{\rm dep})$ and hence the junction capacitance (C_i) varies with $V_{\rm R}$.

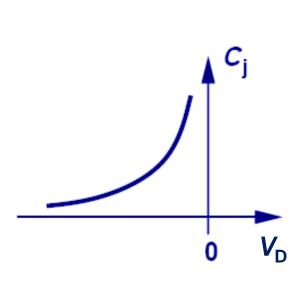






EE105 Spring 2008 Lecture 2, Slide 25 Prof. Wu, UC Berkeley

Voltage-Dependent Capacitance



$$C_{j} = \frac{C_{j0}}{\sqrt{1 + \frac{V_{R}}{V_{0}}}}$$

$$C_{j} = \frac{V_{j0}}{\sqrt{1 + \frac{V_{R}}{V_{0}}}}$$

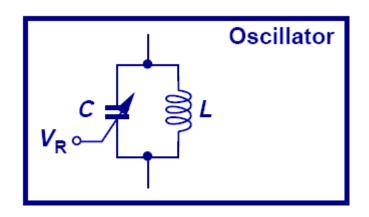
$$C_{j} = \frac{V_{j0}}{\sqrt{1 + \frac{V_{R}}{V_{0}}}}$$

$$C_{j0} = \sqrt{\frac{\varepsilon_{si}q}{2} \frac{N_A N_D}{N_A + N_D} \frac{1}{V_0}}$$

 $\mathcal{E}_{si} \cong 10^{-12}$ F/cm is the permittivity of silicon

Reverse-Biased Diode Application

• A very important application of a reverse-biased PN junction is in a voltage controlled oscillator (VCO), which uses an LC tank. By changing V_R , we can change C, which changes the oscillation frequency.



$$f_{res} = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$

Summary

- Current flowing in a semiconductor is comprised of drift and diffusion components: $J_{tot} = qp\mu_p E + qn\mu_n E + qD_n \frac{dn}{dx} qD_p \frac{dp}{dx}$
- A region depleted of mobile charge exists at the junction between P-type and N-type materials.
 - A built-in potential drop (V_0) across this region is established by the charge density profile; it opposes diffusion of carriers across the junction. A reverse bias voltage serves to enhance the potential drop across the depletion region, resulting in very little (drift) current flowing across the junction.
 - The width of the depletion region (W_{dep}) is a function of the bias voltage (V_D) .

$$W_{dep} = \sqrt{\frac{2\varepsilon_{si}}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right)} \left(V_0 - V_D\right) \qquad V_0 = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$$

EE105 Spring 2008 Lecture 2, Slide 28 Prof. Wu, UC Berkeley