Lecture 23

OUTLINE

- BJT Differential Amplifiers (cont'd)
 - Cascode differential amplifiers
 - Common-mode rejection
 - Differential pair with active load
- Reading: Chapter 10.4-10.6.1

EE105 Spring 2008

Lecture 23, Slide 1

Prof. Wu, UC Berkeley

Cascode Differential Pair

$$\begin{split} R_{out} &= [1 + g_{m3}(r_{O1} \parallel r_{\pi3})] r_{O3} + r_{O1} \parallel r_{\pi3} \\ R_{out} &\cong g_{m3} (r_{O1} \parallel r_{\pi3}) r_{O3} + r_{O1} \parallel r_{\pi3} \end{split}$$

Half circuit for ac analysis

$$V_{\text{out1}}$$

$$A_{v} = -g_{m1}R_{out} \cong -g_{m1} [g_{m3}(r_{O1} || r_{\pi 3})r_{O3} + r_{O1} || r_{\pi 3}]$$

EE105 Spring 2008

Lecture 23, Slide 2

Prof. Wu, UC Berkeley

Telescopic Cascode Differential Pair

$$V_{b3} = V_{b2} = V_{b1} = V_{c0}$$

$$V_{b1} = V_{c1} = V_{c2}$$

$$V_{b1} = V_{c2} = V_{c1}$$

$$V_{b1} = V_{c2} = V_{c2}$$

$$V_{c2} = V_{c2} = V_{c2}$$

$$V_{c2} = V_{c2} = V_{c2} = V_{c2}$$

$$V_{c2} = V_{c2} =$$

Effect of Finite Tail Impedance

 If the tail current source is not ideal, then when an input common-mode voltage is applied, the currents in Q₁ and Q₂ and hence the output common-mode voltage will change.

EE105 Fall 2007

Effect of Input CM Noise Non-Ideal Tail Current • The single-ended outputs are corrupted by the input CM noise. $I_{TAIL} = I_{EE} + \frac{V_P}{R_{EE}}$ • Tail current, I_{TAIL} now changes with V_P and V_P is affected by V_{CM} EE105 Spring 2008 Lecture 23, Slide 7 Prof. Wu, UC Berkeley

CM to DM Conversion; gain A_{CM-DM}

• If finite tail impedance and asymmetry (e.g. in load resistance) are both present, then the differential output signal will contain a portion of the input common-mode signal.

Common-Mode Rejection Ratio

 CMRR is the ratio of the wanted amplified differential input signal to the unwanted converted input common-mode noise that appears at the output.

Differential to Single-Ended Conversion

• Many circuits require a differential to single-ended conversion.

• This topology is not very good; its most critical drawback is supply noise corruption, since no common-mode cancellation mechanism exists. Also, we lose half of the voltage signal.

EE105 Spring 2008 Lecture 23, Slide 12 Prof. Wu, UC Berkeley

... A Better Alternative

 This circuit topology performs differential to single-ended conversion with no loss of gain.

Active Load

- With a current mirror as the load, the signal current produced by Q_1 can be replicated onto Q_4 .
- This type of load is different from the conventional "static load" and is called an "active load."

EE105 Spring 2008

Lecture 23, Slide 14

Prof. Wu, UC Berkeley

7

EE105 Fall 2007

Differential Pair with Active Load

• The input differential pair decreases the current drawn from $R_{\rm L}$ by ΔI , and the active load pushes an extra ΔI into $R_{\rm L}$ by current mirror action; these effects enhance each other.

Active Load vs. Static Load

 The load in the circuit on the left responds to the input signal and enhances the single-ended output, whereas the load in the circuit on the right does not.

EE105 Fall 2007