Lecture 24

OUTLINE

• MOSFET Differential Amplifiers

• Reading: Chapter 10.3-10.6

Common-Mode (CM) Response

• Similarly to its BJT counterpart, a MOSFET differential pair produces zero differential output

Equilibrium Overdrive Voltage

• The *equilibrium overdrive voltage* is defined as $V_{GS}-V_{TH}$ when M_1 and M_2 each carry a current of $I_{SS}/2$.

Minimum CM Output Voltage

- In order to maintain M_1 and M_2 in saturation, the common-mode output voltage cannot fall below $V_{CM}-V_{TH}$.
- This value usually limits voltage gain.

Differential Response

EE105 Spring 2008

Lecture 24, Slide 5

Small-Signal Response

• For small input voltages (+ ΔV and - ΔV), the g_m values are ~equal, so the increase in I_{D1} and decrease in I_{D2} are ~equal in magnitude. Thus, the voltage at node P is constant and can be considered as AC ground.

Lecture 24, Slide 6

Small-Signal Differential Gain

- Since the output signal changes by $-2g_{\rm m}\Delta VR_{\rm D}$ when the input signal changes by $2\Delta V$, the small-signal voltage gain is $-g_{\rm m}R_{\rm D}$.
- Note that the voltage gain is the same as for a CS stage, but that the power dissipation is doubled.

Large-Signal Analysis

Maximum Differential Input Voltage

 There exists a finite differential input voltage that completely steers the tail current from one transistor to the other. This value is known as the *maximum differential input voltage*.

MOSFET vs. BJT Differential Pairs

 In a MOSFET differential pair, there exists a finite differential input voltage to completely switch the current from one transistor to the other, whereas in a BJT differential pair that voltage is infinite.

Effect of Doubling the Tail Current

• If $I_{\rm SS}$ is doubled, the equilibrium overdrive voltage for each transistor increases by $\sqrt{2}$, thus $\Delta V_{\rm in,max}$ increases by $\sqrt{2}$ as well. Moreover, the differential output swing will double.

Effect of Doubling W/L

• If W/L is doubled, the equilibrium overdrive voltage is lowered by $\sqrt{2}$, thus $\Delta V_{in,max}$ will be lowered by $\sqrt{2}$ as well. The differential output swing will be unchanged.

Small-Signal Analysis

 When the input differential signal is small compared to 4I_{ss}/μ_nC_{ox}(W/L), the output differential current is ~ linearly proportional to it:

$$I_{D1} - I_{D2} \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}}} = \sqrt{\mu_n C_{ox} \frac{W}{L} I_{SS}} (V_{in1} - V_{in2})$$

 We can use the small-signal model to prove that the change in tail node voltage (v_P) is zero:

Virtual Ground and Half Circuit

 Since the voltage at node P does not change for small input signals, the half circuit can be used to calculate the voltage gain.

MOSFET Diff. Pair Frequency Response

 Since the MOSFET differential pair can be analyzed using its half-circuit, its transfer function, I/O impedances, locations of poles/zeros are the same as that of the half circuit's.

Example

Half Circuit Example 1

Half Circuit Example 2

MOSFET Cascode Differential Pair

MOSFET Telescopic Cascode Amplifier

Lecture 24, Slide 20

CM to DM Conversion Gain, A_{CM-DM}

• If finite tail impedance and asymmetry are both present, then the differential output signal will contain a portion of the input common-mode signal.

Lecture 24, Slide 21

MOS Diff. Pair with Active Load

 Similarly to its BJT counterpart, a MOSFET differential pair can use an active load to enhance its single-ended output.

Asymmetric Differential Pair

 Because of the vast difference in magnitude of the resistances seen at the drains of M₁ and M₂, the voltage swings at these two nodes are different and therefore node P cannot be viewed as a virtual ground...

Thevenin Equivalent of the Input Pair

EE105 Spring 2008

Lecture 24, Slide 24

Simplified Diff. Pair w/ Active Load

EE105 Spring 2008

Lecture 24, Slide 25