Lecture 2

OUTLINE

- Basic Semiconductor Physics (cont'd)
 - Carrier drift and diffusion
- PN Junction Diodes
 - Electrostatics
 - Capacitance

Reading: Chapter 2.1-2.2

EE105 Spring 2008

Lecture 2. Slide 1

Prof. Wu, UC Berkeley

Dopant Compensation

- An N-type semiconductor can be converted into P-type material by counter-doping it with acceptors such that $N_A > N_D$.
- A *compensated semiconductor material* has both acceptors and donors.

N-type material
$$(N_{D} > N_{A})$$

$$n \approx N_{D} - N_{A}$$

$$p \approx \frac{n_i^2}{N_D - N_A}$$

EE105 Spring 2008

 $\frac{\text{P-type material}}{(N_{\text{A}} > N_{\text{D}})}$

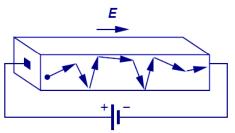
$$p \approx N_A - N_D$$
$$n \approx \frac{n_i^2}{N_A - N_D}$$

Lecture 2, Slide 2

Types of Charge in a Semiconductor

- Negative charges:
 - Conduction electrons (density = n)
 - Ionized acceptor atoms (density = N_A)
- Positive charges:
 - Holes (density = p)
 - Ionized donor atoms (density = N_D)
- The net charge density (C/cm³) in a semiconductor is

$$\rho = q(p - n + N_D - N_A)$$


EE105 Spring 2008

Lecture 2. Slide 3

Prof. Wu, UC Berkeley

Carrier Drift

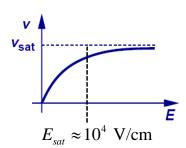
- The process in which charged particles move because of an electric field is called *drift*.
- Charged particles within a semiconductor move with an average velocity proportional to the electric field.
 - The proportionality constant is the carrier mobility.

Hole velocity $\overset{
ightarrow}{v_{_h}}=\mu_{_p}\overset{
ightarrow}{E}$

Electron velocity $\vec{v_e} = -\mu_n \, \vec{E}$

Notation:

 $\mu_{\rm p} \equiv$ hole mobility (cm²/V·s) $\mu_{\rm n} \equiv$ electron mobility (cm²/V·s)


EE105 Spring 2008

Lecture 2, Slide 4

Prof. Wu, UC Berkeley

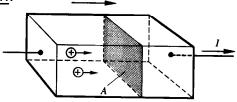
Velocity Saturation

 In reality, carrier velocities saturate at an upper limit, called the saturation velocity (v_{sat}).

$$\mu = \frac{\mu_0}{1 + bE}$$

$$v_{sat} = \frac{\mu_0}{h}$$

$$v = \frac{\mu_0}{1 + \frac{\mu_0 E}{v_{sat}}} E$$


EE105 Spring 2008

Lecture 2, Slide 5

Prof. Wu, UC Berkeley

Drift Current

• Drift current is proportional to the carrier velocity and carrier concentration:

 $v_h t A = volume from which all holes cross plane in time t$

 $p v_h tA = #$ of holes crossing plane in time t

 $q p v_h t A =$ charge crossing plane in time t

 $q p v_h A = \text{charge crossing plane per unit time} = \text{hole current}$

 \rightarrow Hole current per unit area (i.e. current density) $J_{p,drift} = q p v_h$

EE105 Spring 2008

Lecture 2, Slide 6

Conductivity and Resistivity

 In a semiconductor, both electrons and holes conduct current:

$$\begin{split} \boldsymbol{J}_{p,drift} &= qp\mu_p E & \boldsymbol{J}_{n,drift} &= -qn(-\mu_n E) \\ \boldsymbol{J}_{tot,drift} &= \boldsymbol{J}_{p,drift} + \boldsymbol{J}_{n,drift} &= qp\mu_p E + qn\mu_n E \\ \boldsymbol{J}_{tot,drift} &= q(p\mu_p + n\mu_n) E \equiv \sigma E \end{split}$$

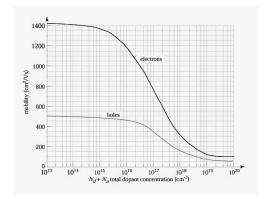
Conductivity

$$\sigma \equiv qp \mu_p + qn \mu_n \quad \text{[unit: mho/cm = S/cm]}$$

Resistivity

$$\rho = \frac{1}{\sigma}$$
 [Unit: Ω -cm]

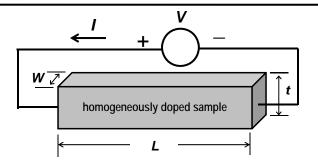
• Typical resistivity range for Si: $10^{-3} \sim 10^3 \Omega$ -cm


EE105 Spring 2008

Lecture 2, Slide 7

Prof. Wu, UC Berkeley

Resistivity Example


• Estimate the resistivity of a Si sample doped with phosphorus to a concentration of 10¹⁵ cm⁻³ and boron to a concentration of 10¹⁷ cm⁻³. The electron mobility and hole mobility are 800 cm²/Vs and 300 cm²/Vs, respectively.

EE105 Spring 2008

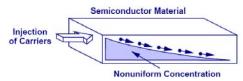
Lecture 2, Slide 8

Resistance

$$R \equiv \frac{V}{I} = \rho \frac{L}{Wt}$$

(Unit: ohms)

where ρ is the resistivity


EE105 Spring 2008

Lecture 2, Slide 9

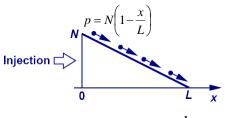
Prof. Wu, UC Berkeley

Carrier Diffusion

- Due to thermally induced random motion, mobile particles tend to move from a region of high concentration to a region of low concentration.
 - Analogy: ink droplet in water
- Current flow due to mobile charge diffusion is proportional to the carrier concentration gradient.
 - The proportionality constant is the diffusion constant.

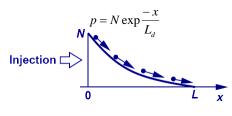
 $J_p = -qD_p \frac{dp}{dx}$

Notation:


 $D_p \equiv$ hole diffusion constant (cm²/s) $D_p \equiv$ electron diffusion constant (cm²/s)

EE105 Spring 2008

Lecture 2, Slide 10


Diffusion Examples

Linear concentration profile
 → constant diffusion current

$$J_{p,diff} = -qD_{p}\frac{dp}{dx}$$
$$= qD_{p}\frac{N}{I}$$

Non-linear concentration profile
 → varying diffusion current

$$J_{p,diff} = -qD_{p} \frac{dp}{dx}$$
$$= \frac{qD_{p}N}{L_{d}} \exp \frac{-x}{L_{d}}$$

EE105 Spring 2008

Lecture 2, Slide 11

Prof. Wu, UC Berkeley

Diffusion Current

• Diffusion current within a semiconductor consists of hole and electron components:

$$J_{p,diff} = -qD_{p} \frac{dp}{dx} \qquad J_{n,diff} = qD_{n} \frac{dn}{dx}$$
$$J_{tot,diff} = q(D_{n} \frac{dn}{dx} - D_{p} \frac{dp}{dx})$$

 The total current flowing in a semiconductor is the sum of drift current and diffusion current:

$$J_{tot} = J_{p,drift} + J_{n,drift} + J_{p,diff} + J_{n,diff}$$

EE105 Spring 2008

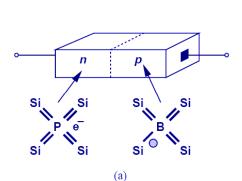
Lecture 2, Slide 12

The Einstein Relation

 The characteristic constants for drift and diffusion are related:

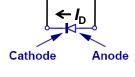
$$\frac{D}{\mu} = \frac{kT}{q}$$

- Note that $\frac{kT}{q} \cong 26 \mathrm{mV}$ at room temperature (300K)
 - This is often referred to as the "thermal voltage".


EE105 Spring 2008

Lecture 2, Slide 13

Prof. Wu, UC Berkeley


The PN Junction Diode

 When a P-type semiconductor region and an N-type semiconductor region are in contact, a PN junction diode is formed.

EE105 Spring 2008

Lecture 2, Slide 14

(b)

Diode Operating Regions

• In order to understand the operation of a diode, it is necessary to study its behavior in three operation regions: equilibrium, reverse bias, and forward bias.

 $V_{\rm D} = 0$

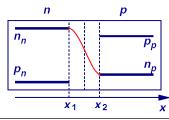
PN Junction in Equilibrium

 $V_{\rm D} < 0$

PN Junction Under Reverse Bias $V_{\rm D} > 0$

PN Junction Under Forward Bias

- Depletion Region
- Built-in Potential
- Junction Capacitance
- \Rightarrow
- I/V Characteristics


EE105 Spring 2008

Lecture 2, Slide 15

Prof. Wu, UC Berkeley

Carrier Diffusion across the Junction

• Because of the difference in hole and electron concentrations on each side of the junction, carriers diffuse across the junction:

Notation:

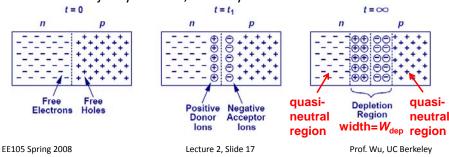
 $n_{\rm n}$ = electron concentration on N-type side (cm⁻³)

 $p_n \equiv$ hole concentration on N-type side (cm⁻³)

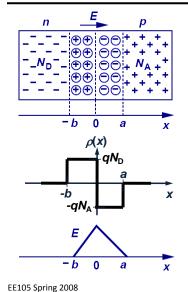
 $p_{\rm n} \equiv$ hole concentration on P-type side (cm⁻³)

 $n_p \equiv$ electron concentration on P-type side (cm⁻³)

EE105 Spring 2008


Lecture 2, Slide 16

Prof. Wu, UC Berkeley


8

Depletion Region

- As conduction electrons and holes diffuse across the junction, they leave behind ionized dopants. Thus, a region that is depleted of mobile carriers is formed.
 - The charge density in the depletion region is not zero.
 - The carriers which diffuse across the junction recombine with majority carriers, i.e. they are annihilated.

The Depletion Approximation

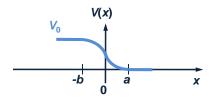
In the depletion region on the **N side**:

$$\frac{dE}{dx} = \frac{\rho}{\varepsilon_{si}} = \frac{qN_D}{\varepsilon_{si}}$$
 Gauss's Law
$$E = \frac{qN_D}{\varepsilon_{si}} (x+b)$$
 $\varepsilon_{si} = 10^{12} \text{ F/cm}$

In the depletion region on the **P side**:

$$\frac{dE}{dx} = \frac{\rho}{\varepsilon_{si}} = \frac{-qN_A}{\varepsilon_{si}}$$

$$E = \frac{qN_A}{\varepsilon_{si}} (a - x)$$


$$aN_A = bN_D$$

Lecture 2, Slide 18

Potential Distribution

- In the depletion region, the electric potential is quadratic since the electric field is linear
- The potential difference between the N and the P side is called built-in potential, V₀

$$E = -\frac{dV}{dx}$$
$$V = -\int E \cdot dx$$

EE105 Spring 2008

Lecture 2, Slide 19

Prof. Wu, UC Berkeley

PN Junction in Equilibrium

• In equilibrium, the drift and diffusion components of current are balanced; therefore the net current flowing across the junction is zero.

$$\boldsymbol{J}_{p,\textit{drift}} = -\boldsymbol{J}_{p,\textit{diff}}$$

$$\boldsymbol{J}_{n, dri\!f\!f} = -\boldsymbol{J}_{n, di\!f\!f}$$

$$\boldsymbol{J}_{\text{tot}} = \boldsymbol{J}_{\text{p,drift}} + \boldsymbol{J}_{\text{n,drift}} + \boldsymbol{J}_{\text{p,diff}} + \boldsymbol{J}_{\text{n,diff}} = 0$$

EE105 Spring 2008

Lecture 2, Slide 20

Prof. Wu, UC Berkeley

EE105 Fall 2007 10

Built-in Potential, V_0

• Because of the electric field in the depletion region, there exists a potential drop across the junction:

$$\begin{split} qp\mu_p E &= qD_p \frac{dp}{dx} \quad \Rightarrow \quad p\mu_p \bigg(-\frac{dV}{dx} \bigg) = D_p \frac{dp}{dx} & \qquad \qquad -b \quad a \\ & \qquad \qquad n \bigvee_p p \\ \Rightarrow \quad -\mu_p \int\limits_{-b}^a dV = D_p \int\limits_{p_n}^{p_p} \frac{dp}{p} & \qquad \qquad -c - - - \oplus \oplus \ominus \ominus + + + + \\ \Rightarrow \quad V(-b) - V(a) &= \frac{D_p}{\mu_p} \ln \frac{p_p}{p_n} = \frac{kT}{q} \ln \frac{N_A}{\left(n_i^2/N_D\right)} & \qquad \qquad \text{Depletion Region} \end{split}$$

$$V_0 = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$$

(Unit: Volts)

EE105 Spring 2008

Lecture 2, Slide 21

Prof. Wu, UC Berkeley

Built-In Potential Example

• Estimate the built-in potential for PN junction below.

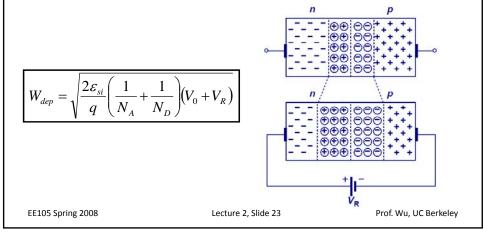
N P
$$N_D = 10^{18} \text{ cm}^{-3} \qquad N_A = 10^{15} \text{ cm}^{-3}$$

$$V_0 = \frac{kT}{q} \ln \left(\frac{N_D N_A}{n_i^2} \right) = (26 \text{mV}) \ln \left(\frac{10^{18} 10^{15}}{10^{20}} \right) = (26 \text{mV}) \ln \left(10^{13} \right)$$

Note:
$$\frac{kT}{q}\ln(10) \cong 26\text{mV} \times 2.3 \cong 60\text{mV}$$

$$V_0 = 60 \text{mV} \times 13 = 780 \text{mV}$$

EE105 Spring 2008

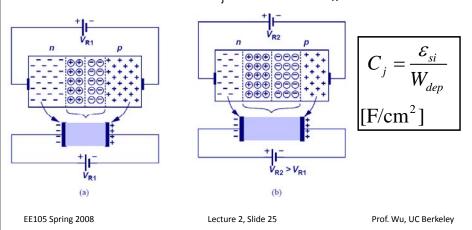

Lecture 2, Slide 22

Prof. Wu, UC Berkeley

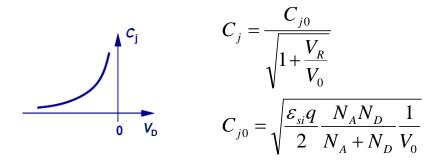
EE105 Fall 2007 11

PN Junction under Reverse Bias

• A reverse bias increases the potential drop across the junction. As a result, the magnitude of the electric field increases and the width of the depletion region widens.


Diode Current under Reverse Bias

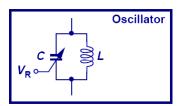
- In equilibrium, the built-in potential effectively prevents carriers from diffusing across the junction.
- Under reverse bias, the potential drop across the junction increases; therefore, negligible diffusion current flows. A very small drift current flows, limited by the rate at which minority carriers diffuse from the quasi-neutral regions into the depletion region.


EE105 Spring 2008 Lecture 2, Slide 24 Prof. Wu, UC Berkeley

PN Junction Capacitance

• A reverse-biased PN junction can be viewed as a capacitor. The depletion width $(W_{\rm dep})$ and hence the junction capacitance $(C_{\rm j})$ varies with $V_{\rm R}$.

Voltage-Dependent Capacitance



 $\varepsilon_{si} \cong 10^{-12}$ F/cm is the permittivity of silicon

EE105 Spring 2008 Lecture 2, Slide 26 Prof. Wu, UC Berkeley

Reverse-Biased Diode Application

A very important application of a reverse-biased PN junction is in a voltage controlled oscillator (VCO), which uses an LC tank. By changing V_R, we can change C, which changes the oscillation frequency.

$$f_{res} = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$

EE105 Spring 2008

Lecture 2. Slide 27

Prof. Wu, UC Berkeley

Summary

- Current flowing in a semiconductor is comprised of drift and diffusion components: $J_{tot} = qp\mu_pE + qn\mu_nE + qD_n\frac{dn}{dx} qD_p\frac{dp}{dx}$
- A region depleted of mobile charge exists at the junction between P-type and N-type materials.
 - A built-in potential drop (V_0) across this region is established by the charge density profile; it opposes diffusion of carriers across the junction. A reverse bias voltage serves to enhance the potential drop across the depletion region, resulting in very little (drift) current flowing across the junction.
 - The width of the depletion region ($W_{\rm dep}$) is a function of the bias voltage ($Y_{\rm p}$).

$$W_{dep} = \sqrt{\frac{2\varepsilon_{si}}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 - V_D)} \qquad V_0 = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$$

EE105 Spring 2008

Lecture 2, Slide 28

Prof. Wu, UC Berkeley

EE105 Fall 2007 14