Lecture 2

OUTLINE

- Basic Semiconductor Physics (cont'd)
 - Carrier drift and diffusion
- PN Junction Diodes
 - Electrostatics
 - Capacitance

Reading: Chapter 2.1-2.2

EE105 Spring 2008

Lecture 2, Slide 1

Prof. Wu. UC Berkeley

Dopant Compensation

- An N-type semiconductor can be converted into Ptype material by counter-doping it with acceptors such that N_A > N_D.
- A compensated semiconductor material has both acceptors and donors.

 $\frac{\text{N-type material}}{(N_{\text{D}} > N_{\text{A}})}$

 $n \approx N_D - N_A$ $p \approx \frac{n_i^2}{N_D - N_A}$

g 2008 Lecture 2

 $\frac{\text{P-type material}}{(N_{\text{A}} > N_{\text{D}})}$

 $p \approx N_A - N_D$ $n \approx \frac{n_i^2}{N_A - N_D}$

2 Prof. Wu, UC Berkele

Types of Charge in a Semiconductor

- Negative charges:
 - Conduction electrons (density = n)
 - Ionized acceptor atoms (density = N_{Λ})
- · Positive charges:
 - Holes (density = p)
 - Ionized donor atoms (density = N_D)
- The net charge density (C/cm³) in a semiconductor is

$$\rho = q(p - n + N_D - N_A)$$

EE105 Spring 2008

Lecture 2, Slide 3

Prof. Wu, UC Berkeley

Carrier Drift

- The process in which charged particles move because of an electric field is called *drift*.
- Charged particles within a semiconductor move with an average velocity proportional to the electric field.
 - The proportionality constant is the carrier mobility.

EE105 Spring 2008 Lecture 2. Slide 4

Notation: $\mu_p = \text{hole mobility (cm}^2/\text{V·s})$ $\mu_n = \text{electron mobility (cm}^2/\text{V·s})$

Prof. Wu. UC Berkeley

Velocity Saturation

 In reality, carrier velocities saturate at an upper limit, called the saturation velocity (v_{sat}).

 $\mu = \frac{\mu_0}{1 + bE}$ μ_0

 $v = \frac{\mu_0}{1 + \mu_0 E} I$

EE105 Spring 2008

Lecture 2, Slide 5

Prof. Wu, UC Berkeley

Drift Current

 Drift current is proportional to the carrier velocity and carrier concentration:

 $v_h t A = \text{volume from which all holes cross plane in time } t$

 $p v_h t A = #$ of holes crossing plane in time t

 $q p v_h t A =$ charge crossing plane in time t

 $q p v_h A =$ charge crossing plane per unit time = hole current

→ Hole current per unit area (i.e. current density) J_{p,drift} = q p v_h

EE105 Spring 2008 Lecture 2, Slide 6 Prof. Wu, UC Berkeley

EE105 Fall 2007

Conductivity and Resistivity

• In a semiconductor, both electrons and holes conduct current:

$$\begin{split} J_{p,drift} &= qp\mu_p E \qquad J_{n,drift} = -qn(-\mu_n E) \\ J_{tot,drift} &= J_{p,drift} + J_{n,drift} = qp\mu_p E + qn\mu_n E \\ J_{tot,drift} &= q(p\mu_p + n\mu_n) E \equiv \sigma E \end{split}$$

Conductivity

$$\sigma \equiv qp\mu_p + qn\mu_n$$
 [unit: mho/cm = S/cm]

Resistivity

$$\rho = \frac{1}{\pi}$$
 [Unit: Ω -cm]

• Typical resistivity range for Si: $10^{-3} \sim 10^3 \ \Omega$ -cm

EE105 Spring 2008 Lecture 2, Slide 7

• Linear concentration profile \Rightarrow constant diffusion current $p = N\left(1 - \frac{x}{L}\right)$ • Non-linear concentration profile \Rightarrow varying diffusion current $J_{p,diff} = -qD_p \frac{dp}{dx}$ $J_{p,diff} = -qD_p \frac{dp}{dx}$ $= qD_p \frac{N}{L}$ $= qD_p \frac{N}{L}$ EEIOS Spring 2008 Lecture 2, Slide 11 Prof. Wu, UC Berkeley

Diffusion Current

Diffusion current within a semiconductor consists of hole and electron components: $J_{p,dijf} = -qD_p \frac{dp}{dx} \qquad J_{n,dijf} = qD_n \frac{dn}{dx}$ $J_{tot,dijf} = q(D_n \frac{dn}{dx} - D_p \frac{dp}{dx})$

• The total current flowing in a semiconductor is the sum of drift current and diffusion current:

EE105 Spring 2008 Lecture 2, Slide 12 Prof. Wu, UC Berkeley

EE105 Fall 2007 2

The Einstein Relation

• The characteristic constants for drift and diffusion are related:

$$\frac{D}{\mu} = \frac{kT}{q}$$

- Note that $\frac{kT}{q} \cong 26 \,\mathrm{mV}$ at room temperature (300K)
 - This is often referred to as the "thermal voltage".

EE105 Spring 2008 Lecture 2, Slide 13 Prof. Wu, UC Berkeley

Diode Operating Regions

 In order to understand the operation of a diode, it is necessary to study its behavior in three operation regions: equilibrium, reverse bias, and forward bias.

regions: equilibrium, reverse bias, and forward bias. $V_D = 0 \qquad V_D < 0 \qquad V_D > 0$ PN Junction in Equilibrium PN Junction Under Reverse Bias PN Junction Under Forward Bias

• Depletion Region \Rightarrow • Junction Capacitance \Rightarrow • I/V Characteristics

EE105 Spring 2008 Lecture 2, Slide 15 Prof. Wu, UC Berkeley

• Because of the difference in hole and electron concentrations on each side of the junction, carriers diffuse across the junction: Notation: $n_n = \text{electron concentration on N-type side (cm}^3)$ $p_n = \text{hole concentration on P-type side (cm}^3)$ $n_n = \text{electron concentration on P-type side (cm}^3)$

As conduction electrons and holes diffuse across the junction, they leave behind ionized dopants. Thus, a region that is depleted of mobile carriers is formed.

- The charge density in the depletion region is not zero.
- The carriers which diffuse across the junction recombine with majority carriers, i.e. they are annihilated.

EE105 Fall 2007 3

Potential Distribution

- In the depletion region, the electric potential is quadratic since the electric field is linear
- The potential difference between the N and the P side is called built-in potential, V₀

$$E = -\frac{dV}{dx}$$
$$V = -\int E \cdot dx$$

EE105 Spring 2008

Lecture 2, Slide 19

Prof. Wu. U.C. Berkeley

PN Junction in Equilibrium

• In equilibrium, the drift and diffusion components of current are balanced; therefore the net current flowing across the junction is zero.

$$J_{p,drift} = -J_{p,diff}$$

$$J_{n,drift} = -J_{n,diff}$$

$$J_{tot} = J_{p,drift} + J_{n,drift} + J_{p,diff} + J_{n,diff} = 0$$

EE105 Spring 2008

Lecture 2, Slide 20

Prof. Wu. UC Berkeley

Built-in Potential, V_0

• Because of the electric field in the depletion region, there exists a potential drop across the junction:

$$qp\mu_p E = qD_p \frac{dp}{dx}$$
 \Rightarrow $p\mu_p \left(-\frac{dV}{dx}\right) = D_p \frac{dp}{dx}$
 $\Rightarrow -\mu_p \int_{-b}^a dV = D_p \int_{p_s}^{p_s} \frac{dp}{p}$

 $\Rightarrow V(-b) - V(a) = \frac{D_p}{\mu_p} \ln \frac{p_p}{p_n} = \frac{kT}{q} \ln \frac{N_A}{(n_i^2 / N_D)}$

 $V_0 = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$

(Unit: Volts)

EE105 Spring 2008

Lecture 2, Slide 21

Prof. Wu, UC Berkeley

Built-In Potential Example

• Estimate the built-in potential for PN junction below.

$$\begin{array}{|c|c|c|c|c|} \hline & & & & P \\ \hline N_D = 10^{18} \text{ cm}^{-3} & & N_A = 10^{15} \text{ cm}^{-3} \\ \hline \end{array}$$

$$V_0 = \frac{kT}{q} \ln \left(\frac{N_D N_A}{n_i^2} \right) = (26 \text{mV}) \ln \left(\frac{10^{18} 10^{15}}{10^{20}} \right) = (26 \text{mV}) \ln \left(10^{13} \right)$$

Note:
$$\frac{kT}{q}\ln(10) \cong 26\text{mV} \times 2.3 \cong 60\text{mV}$$

 $V_0 = 60 \text{mV} \times 13 = 780 \text{mV}$

EE105 Spring 2008

Lecture 2, Slide 22

Prof. Wu, UC Berkeley

PN Junction under Reverse Bias

 A reverse bias increases the potential drop across the junction. As a result, the magnitude of the electric field increases and the width of the depletion region widens.

Diode Current under Reverse Bias

- In equilibrium, the built-in potential effectively prevents carriers from diffusing across the junction.
- Under reverse bias, the potential drop across the junction increases; therefore, negligible diffusion current flows. A very small drift current flows, limited by the rate at which minority carriers diffuse from the quasi-neutral regions into the depletion region.

EE105 Spring 2008

Lecture 2, Slide 24

Prof. Wu, UC Berkeley

PN Junction Capacitance

 A reverse-biased PN junction can be viewed as a capacitor. The depletion width (W_{dep}) and hence the junction capacitance (C) varies with V_s.

Voltage-Dependent Capacitance

 $\mathcal{E}_{\text{si}} \cong 10^{\text{-}12}$ F/cm is the permittivity of silicon

EE105 Spring 2008 Lecture 2, Slide 26 Prof. Wu, UC Berkeley

Reverse-Biased Diode Application

 A very important application of a reverse-biased PN junction is in a voltage controlled oscillator (VCO), which uses an LC tank. By changing V_R, we can change C, which changes the oscillation frequency.

$$f_{res} = \frac{1}{2\pi} \frac{1}{\sqrt{LC}}$$

EE105 Spring 2008

Lecture 2, Slide 27

Prof. Wu, UC Berkeley

Summary

- Current flowing in a semiconductor is comprised of drift and diffusion components: $J_{\omega a} = qp\mu_{p}E + qn\mu_{n}E + qD_{n}\frac{dn}{dx} qD_{p}\frac{dp}{dx}$
- A region depleted of mobile charge exists at the junction between P-type and N-type materials.
 - A built-in potential drop (V_0) across this region is established by the charge density profile; it opposes diffusion of carriers across the junction. A reverse bias voltage serves to enhance the potential drop across the depletion region, resulting in very little (drift) current flowing across the junction.
 - The width of the depletion region ($W_{\rm dep}$) is a function of the bias voltage ($V_{\rm p}$).

 $W_{dep} = \sqrt{\frac{2\varepsilon_{si}}{a} \left(\frac{1}{N} + \frac{1}{N}\right) \left(V_0 - V_D\right)}$ $V_0 = \frac{kT}{a} \ln \frac{N_A N_B}{n^2}$

EE105 Spring 2008

Lecture 2, Slide 28

Y n_i

Prof. Wu. UC Berkelev

EE105 Fall 2007 5