Lecture 3

OUTLINE

- PN Junction Diodes (cont'd)
 - Electrostatics (cont'd)
 - I-V characteristics
 - Reverse breakdown
 - Small-signal model

Reading: Chapter 2.2-2.3, 3.4

EE105 Spring 2008

Lecture 3. Slide 1

Prof. Wu, UC Berkeley

Effect of Applied Voltage

- The quasi-neutral N-type and P-type regions have low resistivity, whereas the depletion region has high resistivity.
 - Thus, when an external voltage V_D is applied across the diode, almost all of this voltage is dropped across the depletion region. (Think of a voltage divider circuit.)
- If V_D < 0 (reverse bias), the potential barrier to carrier diffusion is increased by the applied voltage.
- If V_D > 0 (forward bias), the potential barrier to carrier diffusion is reduced by the applied voltage.

EE105 Spring 2008

Prof. Wu, UC Berkeley

EE105 Fall 2007

PN Junction under Forward Bias

• A forward bias decreases the potential drop across the junction. As a result, the magnitude of the electric field decreases and the width of the depletion region narrows.

Minority Carrier Injection under Forward Bias

- The potential barrier to carrier diffusion is decreased by a forward bias; thus, carriers diffuse across the junction.
 - The carriers which diffuse across the junction become minority carriers in the quasi-neutral regions; they recombine with majority carriers, "dying out" with distance.

EE105 Fall 2007 2

Minority Carrier Concentrations at the Edges of the Depletion Region

- The minority-carrier concentrations at the edges of the depletion region are changed by the factor $e^{qV_D/kT} = e^{V_D/V_T}$
 - There is an excess concentration $(\Delta p_n, \Delta n_p)$ of minority carriers in the quasi-neutral regions, under forward bias.
- Within the quasi-neutral regions, the excess minoritycarrier concentrations decay exponentially with distance from the depletion region, to zero:

Diode Current under Forward Bias

• The current flowing across the junction is comprised of hole diffusion and electron diffusion components:

$$\boldsymbol{J}_{tot} = \boldsymbol{J}_{p,diff}\Big|_{x=0} + \boldsymbol{J}_{n,drift}\Big|_{x=0} + \boldsymbol{J}_{p,diff}\Big|_{x=0} + \boldsymbol{J}_{n,diff}\Big|_{x=0}$$

 Assuming that the diffusion current components are constant within the depletion region (i.e. no recombination occurs in the depletion region):

$$J_{n,diff}\Big|_{x=0} = \frac{qD_{n}n_{i}^{2}}{N_{A}L_{n}} \left(e^{V_{D}/V_{T}} - 1\right) \qquad J_{p,diff}\Big|_{x=0} = \frac{qD_{p}n_{i}^{2}}{N_{D}L_{p}} \left(e^{V_{D}/V_{T}} - 1\right)$$

$$J_{tot} = J_S \left(e^{V_D/V_T} - 1 \right) \text{ where } J_S = q n_i^2 \left(\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right)$$

EE105 Spring 2008

Lecture 3, Slide 6

Current Components under Forward Bias

• For a fixed bias voltage, J_{tot} is constant throughout the diode, but $J_{\text{n}}(x)$ and $J_{\text{p}}(x)$ vary with position.

I-V Characteristic of a PN Junction

 Current increases exponentially with applied forward bias voltage, and "saturates" at a relatively small negative current level for reverse bias voltages.

"Ideal diode" equation:

$$I_D = I_S \left(e^{V_D/V_T} - 1 \right)$$

$$I_S = AJ_S = Aqn_i^2 \left(\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right)$$

EE105 Spring 2008

Lecture 3, Slide 8

Prof. Wu, UC Berkeley

EE105 Fall 2007

Parallel PN Junctions

 Since the current flowing across a PN junction is proportional to its cross-sectional area, two identical PN junctions connected in parallel act effectively as a single PN junction with twice the cross-sectional area, hence twice the current.

Diode Saturation Current $I_{ m S}$

$$I_S = Aqn_i^2 \left(\frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D} \right)$$

- I_S can vary by orders of magnitude, depending on the diode area, semiconductor material, and net dopant concentrations.
 - $-\,$ typical range of values for Si PN diodes: $10^{\text{-}14}$ to $10^{\text{-}17}\,\text{A}/\mu\text{m}^2$
- In an asymmetrically doped PN junction, the term associated with the more heavily doped side is negligible:
 - If the P side is much more heavily doped, $I_{\it S} \cong Aqn_i^{\ 2} \Biggl(\dfrac{D_p}{L_p N_D} \Biggr)$
 - If the N side is much more heavily doped, $I_{S}\cong Aqn_{i}^{\ 2}\!\!\left(rac{D_{n}}{L_{n}N_{A}}
 ight)$

EE105 Spring 2008 Lecture 3, Slide 10 Prof. Wu, UC Be

EE105 Fall 2007 5

Reverse Breakdown

 As the reverse bias voltage increases, the electric field in the depletion region increases. Eventually, it can become large enough to cause the junction to break down so that a large reverse current flows:

EE105 Spring 2008

Lecture 3, Slide 11 Prof. Wu, UC Berkeley

Reverse Breakdown Mechanisms

- a) **Zener breakdown** occurs when the electric field is sufficiently high to pull an electron out of a covalent bond (to generate an electron-hole pair).
- **b)** Avalanche breakdown occurs when electrons and holes gain sufficient kinetic energy (due to acceleration by the E-field) in-between scattering events to cause electronhole pair generation upon colliding with the lattice.

EE105 Fall 2007 6

Constant-Voltage Diode Model

$$\begin{array}{ccc}
V_{D} < V_{D,on} \\
- & \equiv & - & \sim \\
V_{D} > V_{D,on} \\
- & \equiv & \downarrow & \downarrow \\
(b)
\end{array}$$

- If $V_D < V_{D.on}$: The diode operates as an open circuit.
- If $V_D \ge V_{D,on}$: The diode operates as a constant voltage source with value $V_{D,on}$.

EE105 Spring 2008

Lecture 3, Slide 13

Prof. Wu, UC Berkeley

Example: Diode DC Bias Calculations

$$V_{X} = I_{X}R_{1} + V_{D} \cong I_{X}R_{1} + V_{T} \ln \frac{I_{X}}{I_{S}}$$

$$V_{X} = I_{X}R_{1} + V_{D} \cong I_{X}R_{1} + V_{T} \ln \frac{I_{X}}{I_{S}}$$

$$I_{X} = 2.2 \text{mA for } V_{X} = 3V$$

$$I_{X} = 0.2 \text{mA for } V_{X} = 1V$$

- This example shows the simplicity provided by a constant-voltage model over an exponential model.
- Using an exponential model, iteration is needed to solve for current. Using a constant-voltage model, only linear equations need to be solved.

EE105 Spring 2008

Lecture 3, Slide 14

Small-Signal Analysis

- Small-signal analysis is performed at a DC bias point by perturbing the voltage by a small amount and observing the resulting linear current perturbation.
 - If two points on the *I-V* curve are very close, the curve inbetween these points is well approximated by a straight line:

EE105 Spring 2008

Lecture 3, Slide 15

Prof. Wu, UC Berkeley

Diode Small-Signal Model

 Since there is a linear relationship between the small-signal current and small-signal voltage of a diode, the diode can be viewed as a linear resistor when only small changes in voltage are of interest.

EE105 Spring 2008

Lecture 3, Slide 16

Small Sinusoidal Analysis

• If a sinusoidal voltage with small amplitude is applied in addition to a DC bias voltage, the current is also a sinusoid that varies about the DC bias current value.

Cause and Effect

• In (a), voltage is the cause and current is the effect. In (b), current is the cause and voltage is the effect.

EE105 Spring 2008

Lecture 3, Slide 18

Summary: PN-Junction Diode *I-V*

- Under forward bias, the potential barrier is reduced, so that carriers flow (by diffusion) across the junction
 - Current increases exponentially with increasing forward bias
 - The carriers become minority carriers once they cross the junction; as they diffuse in the quasi-neutral regions, they recombine with majority carriers (supplied by the metal contacts)

 Reverse Forward Rise

"injection" of minority carriers

$$I_D = I_S \left(e^{V_D/V_T} - 1 \right)$$

- Under reverse bias, the potential barrier is increased, so that negligible carriers flow across the junction
 - If a minority carrier enters the depletion region (by thermal generation or diffusion from the quasi-neutral regions), it will be swept across the junction by the built-in electric field

"collection" of minority carriers

EE105 Spring 2008

Lecture 3, Slide 19

Prof. Wu, UC Berkeley

EE105 Fall 2007