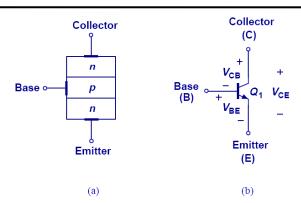
Lecture 4

OUTLINE

- Bipolar Junction Transistor (BJT)
 - General considerations
 - Structure
 - Operation in active mode
 - Large-signal model and I-V characteristics
 - Transconductance
 - Small-signal model
 - The Early effect

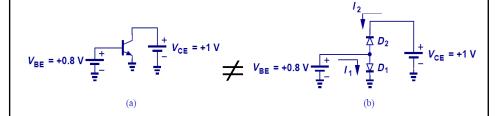

Reading: Chapter 4.1-4.4

EE105 Spring 2008

Lecture 4, Slide 1

Prof. Wu, UC Berkeley

Structure and Symbol of Bipolar Transistor

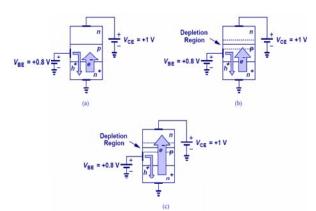

 Bipolar transistor can be thought of as a sandwich of three doped Si regions. The outer two regions are doped with the same polarity, while the middle region is doped with opposite polarity.

EE105 Spring 2008

Lecture 4, Slide 2

Prof. Wu, UC Berkeley

Forward Active Region

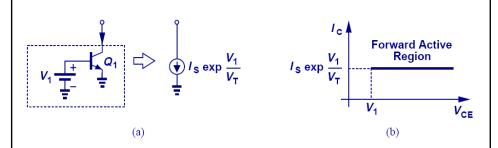

- Forward active region: $V_{BE} > 0$, $V_{BC} < 0$.
- Figure b) presents a wrong way of modeling Figure a).

EE105 Spring 2008

Lecture 4, Slide 3

Prof. Wu, UC Berkeley

Accurate Bipolar Representation


 Collector also carries current due to carrier injection from base.

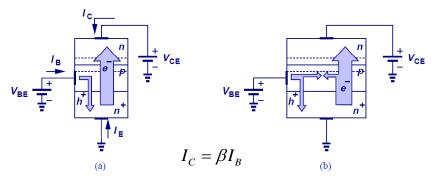
EE105 Spring 2008

Lecture 4, Slide 4

Prof. Wu, UC Berkeley

Constant Current Source

Ideally, the collector current does not depend on the collector to emitter voltage. This property allows the transistor to behave as a constant current source when its base-emitter voltage is fixed.


O5 Spring 2008

Lecture 4, Slide 5

EE105 Spring 2008

Prof. Wu, UC Berkeley

Base Current

- Base current consists of two components:
 - Reverse injection of holes into the emitter and
 - Recombination of holes with electrons coming from the emitter.

EE105 Spring 2008

Lecture 4, Slide 6

Prof. Wu, UC Berkeley

Emitter Current

$$I_E = I_C + I_B$$

$$I_E = I_C \left(1 + \frac{1}{\beta} \right)$$

$$\beta = \frac{I_C}{I_B}$$

 Applying Kirchoff's current law to the transistor, we can easily find the emitter current.

EE105 Spring 2008

Lecture 4, Slide 7

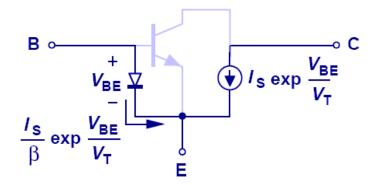
Prof. Wu, UC Berkeley

Summary of Currents

$$I_{C} = I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$I_{B} = \frac{1}{\beta} I_{S} \exp \frac{V_{BE}}{V_{T}}$$

$$I_{E} = \frac{\beta + 1}{\beta} I_{S} \exp \frac{V_{BE}}{V_{T}}$$

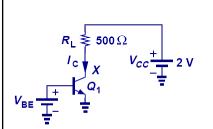

$$\frac{\beta}{\beta + 1} = \alpha$$

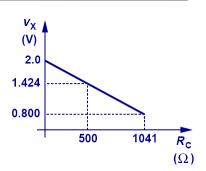
EE105 Spring 2008

Lecture 4, Slide 8

Prof. Wu, UC Berkeley

Bipolar Transistor Large Signal Model

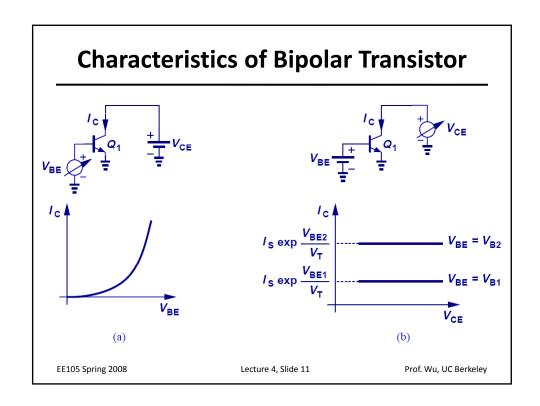

 A diode is placed between base and emitter and a voltage controlled current source is placed between the collector and emitter.

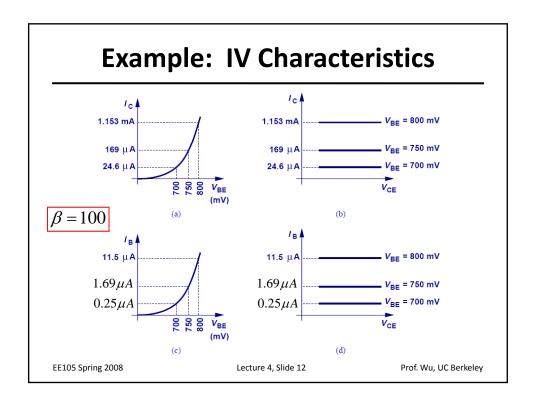

EE105 Spring 2008

Lecture 4, Slide 9

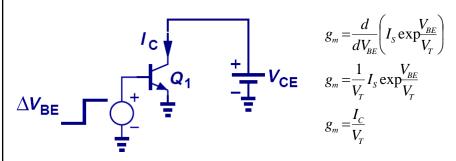
Prof. Wu, UC Berkeley

Example: Maximum R_L

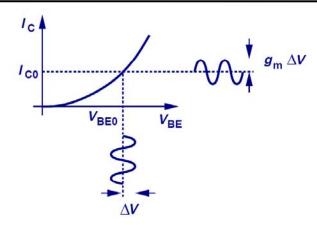



- As R_L increases, V_x drops and eventually forward biases the collector-base junction. This will force the transistor out of forward active region.
- Therefore, there exists a maximum tolerable collector resistance.

EE105 Spring 2008

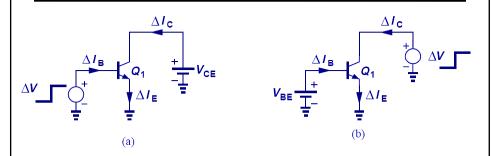

Lecture 4, Slide 10

Prof. Wu, UC Berkeley


Transconductance

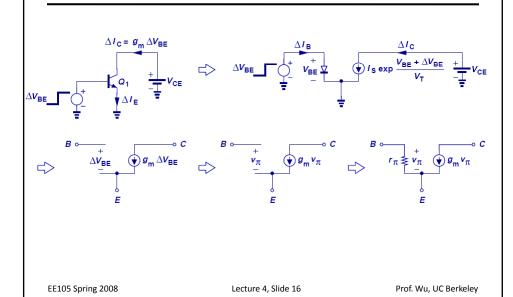
- Transconductance, g_m shows a measure of how well the transistor converts voltage to current.
- It will later be shown that gm is one of the most important parameters in circuit design.

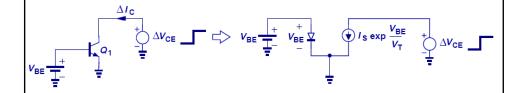
EE105 Spring 2008 Lecture 4, Slide 13 Prof. Wu, UC Berkeley


Visualization of Transconductance

- g_m can be visualized as the slope of I_C versus VBE.
- A large I_C has a large slope and therefore a large g_m.

EE105 Spring 2008 Lecture 4, Slide 14 Prof. Wu, UC Berkeley

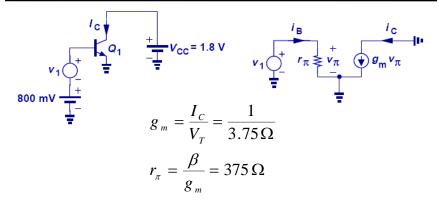

Small-Signal Model: Derivation


 Small signal model is derived by perturbing voltage difference every two terminals while fixing the third terminal and analyzing the change in current of all three terminals. We then represent these changes with controlled sources or resistors.

EE105 Spring 2008 Lecture 4, Slide 15 Prof. Wu, UC Berkeley

Small-Signal Model: V_{BE} Change

Small-Signal Model: V_{CE} Change

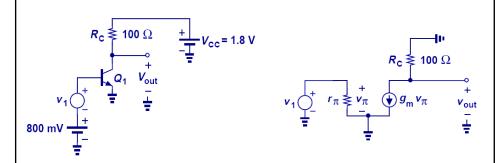

- Ideally, V_{CE} has no effect on the collector current. Thus, it will not contribute to the small signal model.
- It can be shown that V_{CB} has no effect on the small signal model, either.

EE105 Spring 2008

Lecture 4, Slide 17

Prof. Wu, UC Berkeley

Small Signal Example I


 Here, small signal parameters are calculated from DC operating point and are used to calculate the change in collector current due to a change in V_{RF}.

EE105 Spring 2008

Lecture 4, Slide 18

Prof. Wu, UC Berkeley

Small Signal Example II

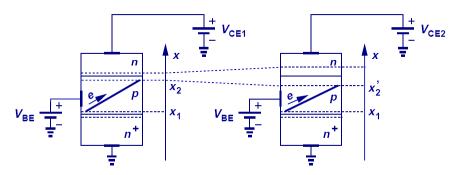
 In this example, a resistor is placed between the power supply and collector, therefore, providing an output voltage.

EE105 Spring 2008

Lecture 4, Slide 19

Prof. Wu, UC Berkeley

AC Ground

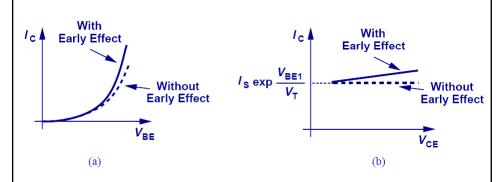

 Since the power supply voltage does not vary with time, it is regarded as a ground in small-signal analysis.

EE105 Spring 2008

Lecture 4, Slide 20

Prof. Wu, UC Berkeley

Early Effect

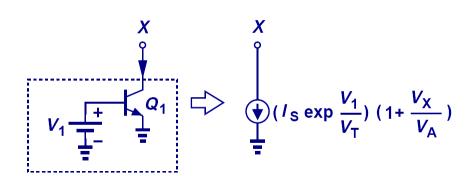

- The claim that collector current does not depend on V_{CE} is not accurate.
- As V_{CE} increases, the depletion region between base and collector increases. Therefore, the effective base width decreases, which leads to an increase in the collector current.

EE105 Spring 2008

Lecture 4, Slide 21

Prof. Wu, UC Berkeley

Early Effect Illustration

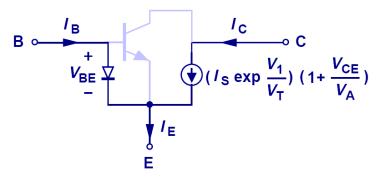

 With Early effect, collector current becomes larger than usual and a function of V_{CE}.

EE105 Spring 2008

Lecture 4, Slide 22

Prof. Wu, UC Berkeley

Early Effect Representation

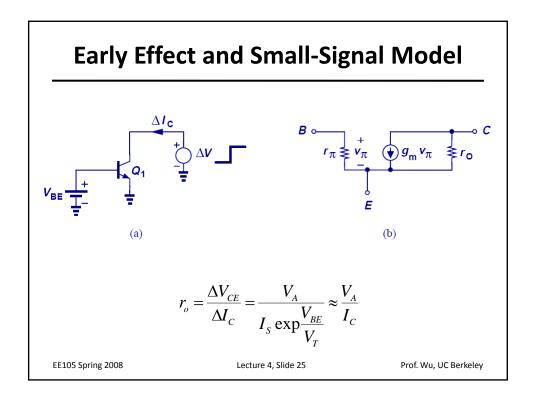


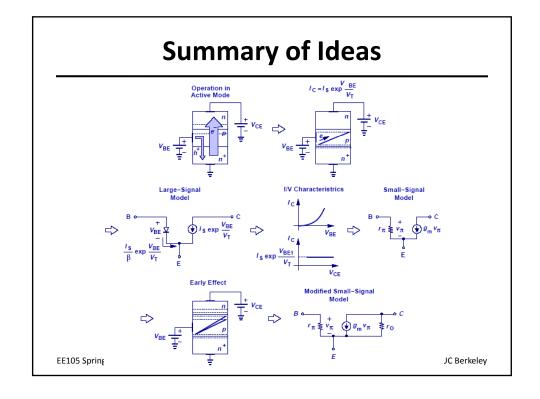
EE105 Spring 2008

Lecture 4, Slide 23

Prof. Wu, UC Berkeley

Early Effect and Large-Signal Model




- Early effect can be accounted for in large-signal model by simply changing the collector current with a correction factor.
- In this mode, base current does not change.

EE105 Spring 2008

Lecture 4, Slide 24

Prof. Wu, UC Berkeley

