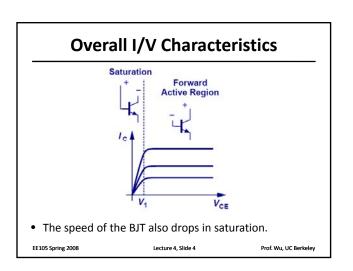
Lecture 5

OUTLINE

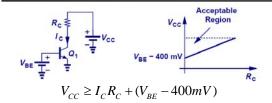
- Bipolar Junction Transistor (BJT) (Cont'd)
 - BJT operation in saturation mode
 - PNP BJT
 - Examples of small signal models

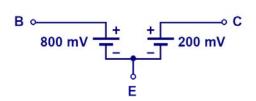
Reading: Chapter 4.5-4.6


Prof. Wu, UC Berkeley

EE105 Spring 2008 Lecture 4, Slide 1

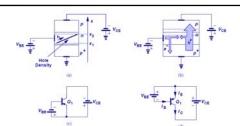
Bipolar Transistor in Saturation Value 1 Value


current increases and the current gain factor, β ,

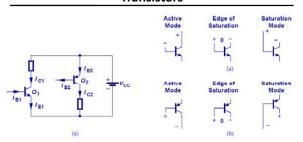

EE105 Fall 2007

Example: Acceptable VCC Region

- In order to keep BJT at least in soft saturation region, the collector voltage must not fall below the base voltage by more than 400mV.
- A linear relationship can be derived for $\rm V_{\rm CC}$ and $\rm R_{\rm C}$ and an acceptable region can be chosen. EE105 Spring 2008


Deep Saturation

• In deep saturation region, the transistor loses its voltage-controlled current capability and V_{CE} becomes constant.


EE105 Spring 2008 Lecture 4, Slide 6 Prof. Wu, UC Berkeley

PNP Transistor

- With the polarities of emitter, collector, and base reversed, a PNP transistor is formed.
- All the principles that applied to NPN's also apply to PNP's, with the exception that emitter is at a higher potential than base and base at a higher potential than collector.

A Comparison between NPN and PNP **Transistors**

 The figure above summarizes the direction of current flow and operation regions for both the NPN and PNP BJT's.

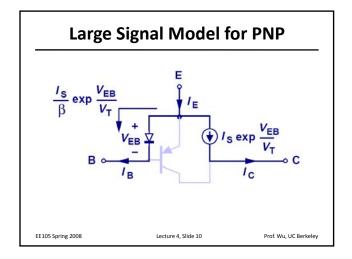
EE105 Spring 2008 Lecture 4, Slide 8 Prof. Wu, UC Berkeley

EE105 Fall 2007 2

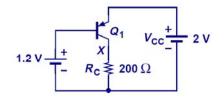
PNP Equations with Early Effect

$$I_{C} = I_{S} \exp \frac{V_{EB}}{V_{T}}$$

$$I_{B} = \frac{I_{S}}{\beta} \exp \frac{V_{EB}}{V_{T}}$$


$$I_{E} = \frac{\beta + 1}{\beta} I_{S} \exp \frac{V_{EB}}{V_{T}}$$

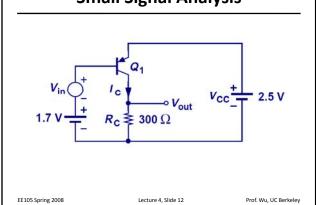
$$I_{C} = \left(I_{S} \exp \frac{V_{EB}}{V_{T}}\right) \left(1 + \frac{V_{EC}}{V_{A}}\right)$$


EE105 Spring 2008

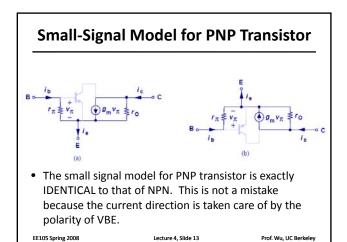
ecture 4, Slide S

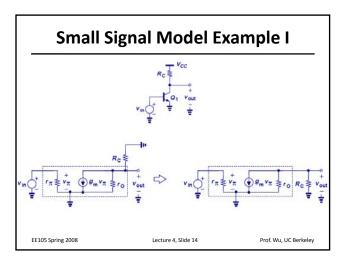
Prof. Wu, UC Berkele

PNP Biasing

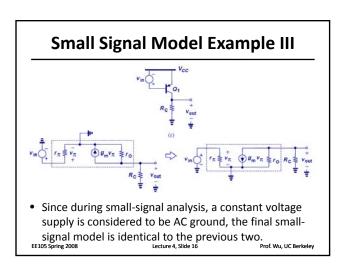

• Note that the emitter is at a higher potential than both the base and collector.

EE105 Spring 2008

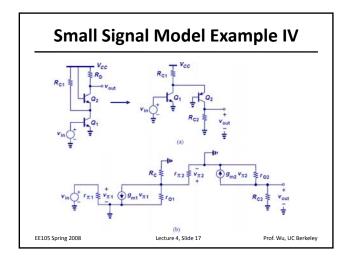

Lecture 4, Slide 11


Prof. Wu, UC Berkeley

Small Signal Analysis



EE105 Fall 2007



Small Signal Model Example II The state of the previous ones. EE105 Spring 2008 Small-signal model is identical to the previous ones.

EE105 Fall 2007 4

EE105 Fall 2007 5