Lecture 6

OUTLINE

- Bipolar Amplifiers
 - General considerations
 - Bias circuit and operating point analysis

Reading: Chapter 5.1-5.2

EE105 Spring 2008

Lecture 6, Slide 1

Prof. Wu, UC Berkeley

Bipolar Amplifiers

General Concepts

- Input and Output Impedances
- Biasing
- DC and Small-Signal Analysis

Operating Point Analysis

- Simple Biasing
- Emitter Degeneration
- Self-Biasing
- Biasing of PNP Devices

Amplifier Topologies

- Common-Emitter Stage
- Common-Base Stage
- Emtter Follower

EE105 Spring 2008

Lecture 6, Slide 2

Prof. Wu, UC Berkeley

EE105 Fall 2007

1

Voltage Amplifier

- In an ideal voltage amplifier, the input impedance is infinite and the output impedance zero.
- But in reality, input or output impedances depart from their ideal values.

EE105 Spring 2008 Lecture 6, Slide 3 Prof. Wu, UC Berkeley

Input/Output Impedances

• The figure above shows the techniques of measuring input and output impedances.

EE105 Spring 2008

Lecture 6, Slide 4

Prof. Wu, UC Berkeley

EE105 Fall 2007

Input Impedance Example I

• When calculating input/output impedance, small-signal analysis is assumed.

EE105 Spring 2008

Lecture 6, Slide 5

Prof. Wu, UC Berkeley

Impedance at a Node

• When calculating I/O impedances at a port, we usually ground one terminal while applying the test source to the other terminal of interest.

EE105 Spring 2008

Lecture 6, Slide 6

Prof. Wu, UC Berkeley

EE105 Fall 2007

Impedance at Collector

 With Early effect, the impedance seen at the collector is equal to the intrinsic output impedance of the transistor (if emitter is grounded).

EE105 Spring 2008 Lecture 6, Slide 7 Prof. Wu, UC Berkeley

Impedance at Emitter

• The impedance seen at the emitter of a transistor is approximately equal to one over its transconductance (if the base is grounded).

EE105 Spring 2008

Lecture 6, Slide 8

Prof. Wu, UC Berkeley

Three Master Rules of Transistor Impedances

- Rule # 1: looking into the base, the impedance is r_{π} if emitter is (ac) grounded.
- Rule # 2: looking into the collector, the impedance is r_o if emitter is (ac) grounded.
- Rule # 3: looking into the emitter, the impedance is 1/g_m if base is (ac) grounded and Early effect is neglected.

EE105 Spring 2008

Lecture 6, Slide 9

Prof. Wu, UC Berkeley

Biasing of BJT

 Transistors and circuits must be biased because (1) transistors must operate in the active region, (2) their small-signal parameters depend on the bias conditions.

EE105 Spring 2008

Lecture 6, Slide 10

Prof. Wu, UC Berkeley

DC Analysis vs. Small-Signal Analysis

- First, DC analysis is performed to determine operating point and obtain small-signal parameters.
- Second, sources are set to zero and small-signal model is used.

EE105 Spring 2008

Lecture 6, Slide 11

Prof. Wu, UC Berkeley

Notation Simplification

$$\begin{array}{c|c}
R_{c} & \xrightarrow{+} V_{cc} \\
\hline
V_{in} & \xrightarrow{-} Q_{1}
\end{array}$$

 Hereafter, the battery that supplies power to the circuit is replaced by a horizontal bar labeled V_{cc}, and input signal is simplified as one node called V_{in}.

EE105 Spring 2008

Lecture 6, Slide 12

Prof. Wu, UC Berkeley

Example of Bad Biasing

- The microphone is connected to the amplifier in an attempt to amplify the small output signal of the microphone.
- Unfortunately, there's no DC bias current running through the transistor to set the transconductance.

EE105 Spring 2008 Lecture 6, Slide 13 Prof. Wu, UC Berkeley

Another Example of Bad Biasing

- The base of the amplifier is connected to V_{cc}, trying to establish a DC bias.
- Unfortunately, the output signal produced by the microphone is shorted to the power supply.

EE105 Spring 2008 Lecture 6, Slide 14 Prof. Wu, UC Berkeley

Biasing with Base Resistor

- Assuming a constant value for V_{BE}, one can solve for both I_B and I_C and determine the terminal voltages of the transistor.
- However, bias point is sensitive to β variations.

EE105 Spring 2008

Lecture 6, Slide 15

Prof. Wu, UC Berkeley

Improved Biasing: Resistive Divider

 Using resistor divider to set V_{BE}, it is possible to produce an I_C that is relatively independent of β if base current is small.

EE105 Spring 2008

Lecture 6, Slide 16

Prof. Wu, UC Berkeley

EE105 Fall 2007

8

Accounting for Base Current

 With proper ratio of R₁ and R₂, I_C can be insensitive to β; however, its exponential dependence on resistor deviations makes it less useful.

EE105 Spring 2008

Lecture 6, Slide 17

Prof. Wu, UC Berkeley

Emitter Degeneration Biasing

- The presence of R_E helps to absorb the error in V_χ so V_{BE} stays relatively constant.
- This bias technique is less sensitive to β (I $_1>>$ I $_B$) and V $_{BE}$ variations.

EE105 Spring 2008

Lecture 6, Slide 18

Prof. Wu, UC Berkeley

Design Procedure

- Choose an I_C to provide the necessary small signal parameters, g_m , r_{π} , etc.
- Considering the variations of R₁, R₂, and V_{BE}, choose a value for V_{RE}.
- With V_{RE} chosen, and V_{BE} calculated, V_x can be determined.
- Select R₁ and R₂ to provide V_x

EE105 Spring 2008

Lecture 6, Slide 19

Prof. Wu, UC Berkeley

Self-Biasing Technique

- This bias technique utilizes the collector voltage to provide the necessary V_x and I_B.
- One important characteristic of this technique is that collector has a higher potential than the base, thus guaranteeing active operation of the transistor.

EE105 Spring 2008

Lecture 6, Slide 20

Prof. Wu, UC Berkeley

Self-Biasing Design Guidelines

(1)
$$R_C >> \frac{R_B}{\beta}$$

(2) $\Delta V_{BE} << V_{CC} - V_{BE}$

- (1) provides insensitivity to β .
- (2) provides insensitivity to variation in VBE.

EE105 Spring 2008

Lecture 6, Slide 21

Prof. Wu, UC Berkeley

Summary of Biasing Techniques

EE105 Spring 2008

Lecture 6, Slide 22

Prof. Wu, UC Berkeley

PNP Biasing Techniques

• Same principles that apply to NPN biasing also apply to PNP biasing with only polarity modifications.

EE105 Spring 2008

Lecture 6, Slide 23

Prof. Wu, UC Berkeley

EE105 Fall 2007