Lecture 6 OUTLINE • Bipolar Amplifiers - General considerations - Bias circuit and operating point analysis Reading: Chapter 5.1-5.2

Input Impedance Example I

• When calculating input/output impedance, small-signal analysis is assumed.

EE105 Spring 2008 Lecture 6, Slide 5 Prof. Wu, UC Berkeler

Impedance at a Node

• When calculating I/O impedances at a port, we usually ground one terminal while applying the test source to the other terminal of interest.

EE105 Spring 2008 Lecture 6, Slide 6 Prof. Wu, UC Berkeley

Impedance at Collector

• With Early effect, the impedance seen at the collector is equal to the intrinsic output impedance of the transistor (if emitter is grounded).

EE105 Spring 2008 Lecture 6, Slide 7 Prof. Wu, UC Berkeley

Impedance at Emitter

• The impedance seen at the emitter of a transistor is approximately equal to one over its transconductance (if the base is grounded).

EE105 Spring 2008 Lecture 6, Slide 8 Prof. Wu, UC Berkeley

Three Master Rules of Transistor Impedances

- Rule # 1: looking into the base, the impedance is ${\bf r}_{\pi}$ if emitter is (ac) grounded.
- Rule # 2: looking into the collector, the impedance is r_o if emitter is (ac) grounded.
- Rule # 3: looking into the emitter, the impedance is 1/g_m if base is (ac) grounded and Early effect is neglected.

EE105 Spring 2008 Lecture 6, Slide 9 Prof. Wu, UC Berkele

Biasing of BJT Value Ic Bias (dc) Value t Fransistors and circuits must be biased because (1) transistors must operate in the active region, (2) their small-signal parameters depend on the bias conditions.

DC Analysis vs. Small-Signal Analysis

- First, DC analysis is performed to determine operating point and obtain small-signal parameters.
- Second, sources are set to zero and small-signal model is used.

EE105 Spring 2008

Lecture 6, Slide 11

Prof. Wu, UC Berkeley

Notation Simplification

 Hereafter, the battery that supplies power to the circuit is replaced by a horizontal bar labeled V_{cc}, and input signal is simplified as one node called V_{in}.

EE105 Spring 2008 Lecture 6, Slide 12

Prof. Wu, UC Berkeley

Example of Bad Biasing

- The microphone is connected to the amplifier in an attempt to amplify the small output signal of the microphone.
- Unfortunately, there's no DC bias current running through the transistor to set the transconductance. EE105 Spring 2008

Another Example of Bad Biasing

- The base of the amplifier is connected to $V_{cc\prime}$ trying to establish a DC bias.
- Unfortunately, the output signal produced by the microphone is shorted to the power supply.

Lecture 6, Slide 14

Biasing with Base Resistor

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}}$$

$$I_{C} = \beta \left(\frac{V_{CC} - V_{BE}}{R_{B}}\right)$$

- $\bullet\;$ Assuming a constant value for $V_{\text{BE}}\text{,}$ one can solve for both I_B and I_C and determine the terminal voltages of the transistor.
- However, bias point is sensitive to β variations.

Lecture 6, Slide 15

Improved Biasing: Resistive Divider

• Using resistor divider to set V_{BE}, it is possible to produce an I_c that is relatively independent of β if base current is small.

EE105 Spring 2008 Lecture 6, Slide 16 Prof. Wu, UC Berkeley

Accounting for Base Current

 With proper ratio of R₁ and R₂, I_C can be insensitive to β; however, its exponential dependence on resistor deviations makes it less useful.

EE105 Spring 2008 Lecture 6, Slide 17 Prof. Wu, UC Be

Emitter Degeneration Biasing

- The presence of R_E helps to absorb the error in V_X so V_{BE} stays relatively constant.
- This bias technique is less sensitive to β (I $_1>>$ I $_B$) and V $_{BE}$ variations.

EE105 Spring 2008 Lecture 6, Slide 18 Prof. Wu, UC Berkeley

Design Procedure

- Choose an I_C to provide the necessary small signal parameters, $g_{m'}$, $r_{\pi'}$, etc.
- Considering the variations of R₁, R₂, and V_{BE}, choose a value for V_{RE}.
- With V_{RE} chosen, and V_{BE} calculated, V_x can be determined.
- Select R₁ and R₂ to provide V_x

EE105 Spring 2008

Lecture 6, Slide 19

Prof. Wu, UC Berkeley

Self-Biasing Technique

- This bias technique utilizes the collector voltage to provide the necessary $V_{\rm x}$ and $I_{\rm B}$.
- One important characteristic of this technique is that collector has a higher potential than the base, thus guaranteeing active operation of the transistor.

EE105 Spring 2008 Lecture 6, Slide 20 Prof. Wu, UC Berkeley

EE105 Fall 2007 5

Self-Biasing Design Guidelines

(1)
$$R_C >> \frac{R_B}{\beta}$$

(2) $\Delta V_{BE} << V_{CC} - V_{BE}$

$$(2) \Delta V_{RF} << V_{CC} - V_{RF}$$

- (1) provides insensitivity to $\boldsymbol{\beta}$.
- (2) provides insensitivity to variation in VBE.

EE105 Spring 2008 Lecture 6, Slide 21

PNP Biasing Techniques

• Same principles that apply to NPN biasing also apply to PNP biasing with only polarity modifications.

EE105 Spring 2008

Lecture 6, Slide 23

Prof. Wu, UC Berkeley