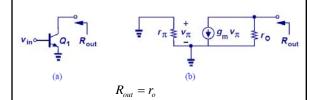
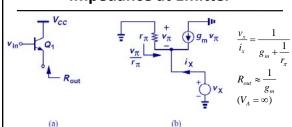

Lecture 6 OUTLINE • Bipolar Amplifiers - General considerations - Bias circuit and operating point analysis Reading: Chapter 5.1-5.2

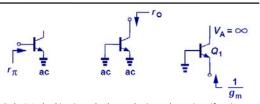


EE105 Fall 2007


Impedance at Collector

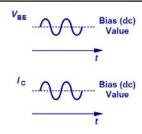
• With Early effect, the impedance seen at the collector is equal to the intrinsic output impedance of the transistor (if emitter is grounded).

EE105 Spring 2008 Lecture 6, Slide 7 Prof. Wu, UC Berkeley


Impedance at Emitter

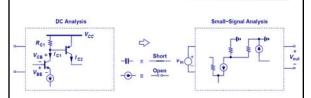
 The impedance seen at the emitter of a transistor is approximately equal to one over its transconductance (if the base is grounded).

pring 2008 Lecture 6, Slide 8 Prof. Wu, UC Berkeley


Three Master Rules of Transistor Impedances

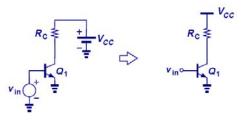
- Rule # 1: looking into the base, the impedance is r_π if emitter is (ac) grounded.
- Rule # 2: looking into the collector, the impedance is r_o if emitter is (ac) grounded.
- Rule # 3: looking into the emitter, the impedance is 1/g_m if base is (ac) grounded and Early effect is neglected.

EE105 Spring 2008 Lecture 6, Slide 9 Prof. Wu, UC Berkeley


Biasing of BJT

 Transistors and circuits must be biased because (1) transistors must operate in the active region, (2) their small-signal parameters depend on the bias conditions.

EE105 Spring 2008 Lecture 6, Slide 10 Prof. Wu, UC Berkeley


DC Analysis vs. Small-Signal Analysis

- First, DC analysis is performed to determine operating point and obtain small-signal parameters.
- Second, sources are set to zero and small-signal model is used.

EE105 Spring 2008 Lecture 6, Slide 11 Prof. Wu, UC Berkeley

Notation Simplification

 Hereafter, the battery that supplies power to the circuit is replaced by a horizontal bar labeled V_{cc}, and input signal is simplified as one node called V_{in}.

EE105 Spring 2008 Lecture 6, Slide 12 Prof. Wu, UC Berkeley

EE105 Fall 2007 2

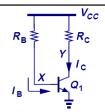
Example of Bad Biasing

- The microphone is connected to the amplifier in an attempt to amplify the small output signal of the microphone.
- Unfortunately, there's no DC bias current running through the transistor to set the transconductance.

EE105 Spring 2008 Lecture 6, Slide 13

Prof. Wu, UC Berkeley

Another Example of Bad Biasing

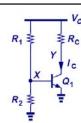

- The base of the amplifier is connected to V_{cc}, trying to establish a DC bias.
- Unfortunately, the output signal produced by the microphone is shorted to the power supply.

EE105 Spring 2008

Lecture 6, Slide 14

Prof. Wu, UC Berkeley

Biasing with Base Resistor


$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}}$$

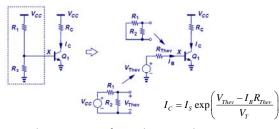
$$I_{C} = \beta \left(\frac{V_{CC} - V_{BE}}{R_{B}}\right)$$

- Assuming a constant value for V_{BE}, one can solve for both I_B and I_C and determine the terminal voltages of the transistor.
- However, bias point is sensitive to β variations.

 EE105 Spring 2008 Prof. Wu, UC Berkeley

Improved Biasing: Resistive Divider

$$R_{c}$$
 $V_{x} = \frac{R_{2}}{R_{1} + R_{2}} V_{CC}$
 I_{c}
 $I_{C} = I_{S} \exp(\frac{R_{2}}{R_{1} + R_{2}} \frac{V_{CC}}{V_{T}})$

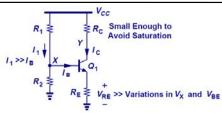

 Using resistor divider to set V_{BE}, it is possible to produce an I_C that is relatively independent of β if base current is small.

EE105 Spring 2008

Lecture 6, Slide 16

Prof. Wu, UC Berkeley

Accounting for Base Current


 With proper ratio of R₁ and R₂, I_C can be insensitive to β; however, its exponential dependence on resistor deviations makes it less useful.

EE105 Spring 2008

Lecture 6, Slide 17

Prof. Wu, UC Berkeley

Emitter Degeneration Biasing

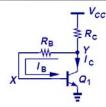
- The presence of R_E helps to absorb the error in V_X so V_{BE} stays relatively constant.
- This bias technique is less sensitive to β (I $_{_1}>>$ I $_{_B})$ and V $_{_{\rm RF}}$ variations.

EE105 Spring 2008

Lecture 6, Slide 18

Prof. Wu, UC Berkeley

Design Procedure


- Choose an I_C to provide the necessary small signal parameters, g_m , r_π , etc.
- Considering the variations of R₁, R₂, and V_{BE}, choose a value for V_{RE} .
- With V_{RE} chosen, and V_{BE} calculated, V_{x} can be determined.
- Select R₁ and R₂ to provide V_x

EE105 Spring 2008

Lecture 6, Slide 19

Prof. Wu, UC Berkeley

Self-Biasing Technique

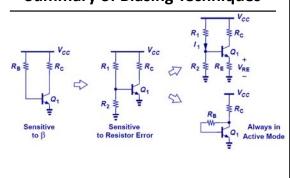
- This bias technique utilizes the collector voltage to provide the necessary V_x and I_B .
- One important characteristic of this technique is that collector has a higher potential than the base, thus guaranteeing active operation of the transistor.

Self-Biasing Design Guidelines

(1)
$$R_C >> \frac{R_B}{\beta}$$

(2) $\Delta V_{BE} << V_{CC} - V_{BE}$

(2)
$$\Delta V_{RE} \ll V_{CC} - V_{RE}$$

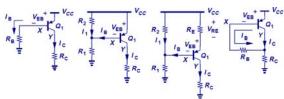

- (1) provides insensitivity to β .
- (2) provides insensitivity to variation in VBE.

EE105 Spring 2008

Lecture 6. Slide 21

Prof. Wu. UC Berkeley

Summary of Biasing Techniques



Lecture 6. Slide 22

Prof. Wu. UC Berkeley

EE105 Spring 2008

PNP Biasing Techniques

• Same principles that apply to NPN biasing also apply to PNP biasing with only polarity modifications.

EE105 Spring 2008

Lecture 6, Slide 23

Prof. Wu, UC Berkeley