Lecture 7

OUTLINE

- Bipolar Amplifier Topologies (1)
 - Common-Emitter Amplifiers

Reading: Chapter 5.3.1

Possible Bipolar Amplifier Topologies

(e)

(d)

- Three possible ways to apply an input to an amplifier and three possible ways to sense its output.
- However, in reality only three of six input/output combinations are useful.

(f)

 $v_{\rm out}$

Study of Common-Emitter Topology

- Analysis of CE Core
 - Inclusion of Early Effect
- Emitter Degeneration
 - Inclusion of Early Effect
- CE Stage with Biasing

EE105 Spring 2008 Lecture 7, Slide 3 Prof. Wu, UC Berkeley

Common-Emitter Topology

Small Signal of CE Amplifier

EE105 Spring 2008 Lecture 7, Slide 5 Prof. Wu, UC Berkeley

Limitation on CE Voltage Gain

- Since g_m can be written as I_C/V_T , the CE voltage gain can be written as the ratio of V_{RC} and V_T .
- V_{RC} is the potential difference between V_{CC} and V_{CE} , and V_{CE} cannot go below V_{BE} in order for the transistor to be in active region.

Tradeoff between Voltage Gain and Headroom

EE105 Spring 2008 Lecture 7, Slide 7 Prof. Wu, UC Berkeley

I/O Impedances of CE Stage

$$R_{in} = \frac{v_X}{i_X} = r_{\pi}$$

$$R_{\scriptscriptstyle out} = rac{v_{\scriptscriptstyle X}}{i_{\scriptscriptstyle X}} = R_{\scriptscriptstyle C}$$

• When measuring output impedance, the input port has to be grounded so that $V_{in} = 0$.

EE105 Spring 2008 Lecture 7, Slide 8 Prof. Wu, UC Berkeley

CE Stage Trade-offs

Inclusion of Early Effect

$$A_{v} = -g_{m}(R_{C} \parallel r_{O})$$

$$R_{out} = R_{C} \parallel r_{O}$$

 Early effect will lower the gain of the CE amplifier, as it appears in parallel with RC.

EE105 Spring 2008 Lecture 7, Slide 10 Prof. Wu, UC Berkeley

Intrinsic Gain

$$A_{v} = -g_{m} r_{O}$$

$$|A_{v}| = \frac{V_{A}}{V_{T}}$$

- As R_c goes to infinity, the voltage gain reaches the product of g_m and r_o, which represents the maximum voltage gain the amplifier can have.
- The intrinsic gain is independent of the bias current.

Current Gain

$$A_{I} = rac{i_{out}}{i_{in}}$$
 $A_{I}|_{CE} = eta$

- Another parameter of the amplifier is the current gain, which is defined as the ratio of current delivered to the load to the current flowing into the input.
- For a CE stage, it is equal to β .

Emitter Degeneration

- By inserting a resistor in series with the emitter, we "degenerate" the CE stage.
- This topology will decrease the gain of the amplifier but improve other aspects, such as linearity, and input impedance.

Small-Signal Model

 Interestingly, this gain is equal to the total load resistance to ground divided by 1/g_m plus the total resistance placed in series with the emitter.

Emitter Degeneration Example I

• The input impedance of Q_2 can be combined in parallel with R_E to yield an equivalent impedance that degenerates Q_1 .

EE105 Spring 2008 Lecture 7, Slide 15 Prof. Wu, UC Berkeley

Emitter Degeneration Example II

• In this example, the input impedance of Q_2 can be combined in parallel with R_C to yield an equivalent collector impedance to ground.

EE105 Spring 2008 Lecture 7, Slide 16 Prof. Wu, UC Berkeley

Input Impedance of Degenerated CE Stage

• With emitter degeneration, the input impedance is increased from r_{π} to r_{π} + (β +1) R_{E} ; a desirable effect.

EE105 Spring 2008 Lecture 7, Slide 17 Prof. Wu, UC Berkeley

Output Impedance of Degenerated CE Stage without Considering Early Effect

• Emitter degeneration does not alter the output impedance in this case. (More on this later.)

EE105 Spring 2008 Lecture 7, Slide 18 Prof. Wu, UC Berkeley

Capacitor at Emitter

- At DC the capacitor is open and the current source biases the amplifier.
- For ac signals, the capacitor is short and the amplifier is degenerated by RE.

EE105 Spring 2008 Lecture 7, Slide 19 Prof. Wu, UC Berkeley

Example: Design CE Stage with Degeneration as a Black Box

• If $g_m R_E$ is much greater than unity, G_m is more linear.

EE105 Spring 2008 Lecture 7, Slide 20 Prof. Wu, UC Berkeley