Lecture 7

OUTLINE

- Bipolar Amplifier Topologies (1)
 - Common-Emitter Amplifiers

Reading: Chapter 5.3.1

EE105 Spring 2008

Lecture 7, Slide 1

Prof. Wu, UC Berkeley

Possible Bipolar Amplifier Topologies

- Three possible ways to apply an input to an amplifier and three possible ways to sense its output.
- However, in reality only three of six input/output combinations are useful.

EE105 Spring 2008

Lecture 7, Slide 2

Prof. Wu, UC Berkeley

EE105 Fall 2007

Study of Common-Emitter Topology

- Analysis of CE Core
 - Inclusion of Early Effect
- Emitter Degeneration
 - Inclusion of Early Effect
- CE Stage with Biasing

EE105 Spring 2008

EE105 Spring 2008

Lecture 7, Slide 3

Prof. Wu, UC Berkeley

Prof. Wu, UC Berkeley

Common-Emitter Topology

EE105 Fall 2007

Lecture 7, Slide 4

Small Signal of CE Amplifier

EE105 Spring 2008

Lecture 7. Slide 5

Prof. Wu, UC Berkeley

Limitation on CE Voltage Gain

- Since g_m can be written as I_C/V_T, the CE voltage gain can be written as the ratio of V_{RC} and V_T.
- V_{RC} is the potential difference between V_{CC} and V_{CE}, and V_{CE} cannot go below V_{BE} in order for the transistor to be in active region.

EE105 Spring 2008

Lecture 7, Slide 6

Prof. Wu, UC Berkeley

I/O Impedances of CE Stage

$$R_{in} = rac{v_X}{i_X} = r_\pi$$
 $R_{out} = rac{v_X}{i_X} = R_C$

 When measuring output impedance, the input port has to be grounded so that V_{in} = 0.

EE105 Spring 2008

Lecture 7, Slide 8

Prof. Wu, UC Berkeley

EE105 Fall 2007

CE Stage Trade-offs

EE105 Spring 2008

Lecture 7, Slide 9

Prof. Wu, UC Berkeley

Inclusion of Early Effect

$$A_{v} = -g_{m}(R_{C} \parallel r_{O})$$

$$R_{out} = R_{C} \parallel r_{O}$$

• Early effect will lower the gain of the CE amplifier, as it appears in parallel with RC.

EE105 Spring 2008

Lecture 7, Slide 10

Prof. Wu, UC Berkeley

Intrinsic Gain

$$A_{v} = -g_{m}r_{O}$$
$$|A_{v}| = \frac{V_{A}}{V_{T}}$$

- As R_C goes to infinity, the voltage gain reaches the product of g_m and r_O, which represents the maximum voltage gain the amplifier can have.
- The intrinsic gain is independent of the bias current.

EE105 Spring 2008

Lecture 7, Slide 11

Prof. Wu, UC Berkeley

Current Gain

$$A_{I} = rac{i_{out}}{i_{in}}$$
 $A_{I}|_{CE} = eta$

- Another parameter of the amplifier is the current gain, which is defined as the ratio of current delivered to the load to the current flowing into the input.
- For a CE stage, it is equal to β.

EE105 Spring 2008

Lecture 7, Slide 12

Prof. Wu, UC Berkeley

Emitter Degeneration

- By inserting a resistor in series with the emitter, we "degenerate" the CE stage.
- This topology will decrease the gain of the amplifier but improve other aspects, such as linearity, and input impedance.

EE105 Spring 2008

Lecture 7, Slide 13

Prof. Wu, UC Berkeley

Small-Signal Model

$$\mathbf{v}_{\text{in}} = -\frac{g_{m}R_{C}}{1 + g_{m}R_{E}}$$

$$A_{v} = -\frac{g_{m}R_{C}}{1 + g_{m}R_{E}}$$

$$A_{v} = -\frac{R_{C}}{\frac{1}{g_{m}} + R_{E}}$$

 Interestingly, this gain is equal to the total load resistance to ground divided by 1/g_m plus the total resistance placed in series with the emitter.

EE105 Spring 2008

Lecture 7, Slide 14

Prof. Wu, UC Berkeley

Emitter Degeneration Example I

 The input impedance of Q₂ can be combined in parallel with R_E to yield an equivalent impedance that degenerates Q₁.

EE105 Spring 2008

Lecture 7, Slide 15

Prof. Wu, UC Berkeley

Emitter Degeneration Example II

$$V_{\text{in}} \sim V_{\text{out}} \qquad V_{\text{cc}} \qquad V_{\text{out}} \qquad V_{\text{$$

 In this example, the input impedance of Q₂ can be combined in parallel with R_C to yield an equivalent collector impedance to ground.

EE105 Spring 2008

Lecture 7, Slide 16

Prof. Wu, UC Berkeley

Input Impedance of Degenerated CE Stage

• With emitter degeneration, the input impedance is increased from r_{π} to r_{π} + (β +1) R_{E} ; a desirable effect.

EE105 Spring 2008

Lecture 7, Slide 17

Prof. Wu, UC Berkeley

Output Impedance of Degenerated CE Stage without Considering Early Effect

• Emitter degeneration does not alter the output impedance in this case. (More on this later.)

EE105 Spring 2008

Lecture 7, Slide 18

Prof. Wu, UC Berkeley

Capacitor at Emitter

- At DC the capacitor is open and the current source biases the amplifier.
- For ac signals, the capacitor is short and the amplifier is degenerated by RE.

EE105 Spring 2008

Lecture 7, Slide 19

Prof. Wu, UC Berkeley

Example: Design CE Stage with Degeneration as a Black Box

(a)
$$V_A = \infty$$
 (b) $i_{out} = g_m \frac{v_{in}}{1 + (r_\pi^{-1} + g_m)R_E}$ $G_m = \frac{i_{out}}{v_{in}} \approx \frac{g_m}{1 + g_m R_E}$

• If $g_m R_E$ is much greater than unity, G_m is more linear.

EE105 Spring 2008

Lecture 7, Slide 20

Prof. Wu, UC Berkeley