Lecture 7 OUTLINE • Bipolar Amplifier Topologies (1) – Common-Emitter Amplifiers Reading: Chapter 5.3.1

Study of Common-Emitter Topology

- Analysis of CE Core
 - Inclusion of Early Effect
- Emitter Degeneration
 - Inclusion of Early Effect
- CE Stage with Biasing

EE105 Spring 2008 Lecture 7, Slide 3 Prof. Wu, UC Berkeley

EE105 Fall 2007

 V_{RC} is the potential difference between V_{CC} and V_{CE}, and V_{CE} cannot go below V_{BE} in order for the transistor to be in active region.

EE105 Spring 2008 Lecture 7, Slide 6 Prof. Wu, UC Berkeley

EE105 Fall 2007 2

Intrinsic Gain

$$A_{v} = -g_{m}r_{O}$$
$$|A_{v}| = \frac{V_{A}}{V_{T}}$$

- As R_C goes to infinity, the voltage gain reaches the product of g_m and r_O, which represents the maximum voltage gain the amplifier can have.
- The intrinsic gain is independent of the bias current.

EE105 Spring 2008 Lecture 7, Slide 11 Prof. Wu, UC Berkeley

Current Gain

$$A_{I} = \frac{i_{out}}{i_{in}}$$
 $A_{I}|_{GF} = \beta$

- Another parameter of the amplifier is the current gain, which is defined as the ratio of current delivered to the load to the current flowing into the input.
- For a CE stage, it is equal to β .

EE105 Spring 2008 Lecture 7, Slide 12 Prof. Wu, UC Berkeley

EE105 Fall 2007 3

Emitter Degeneration

- By inserting a resistor in series with the emitter, we "degenerate" the CE stage.
- This topology will decrease the gain of the amplifier but improve other aspects, such as linearity, and input impedance.

EE105 Spring 2008 Lecture 7, Slide 13

Small-Signal Model

• Interestingly, this gain is equal to the total load resistance to ground divided by $1/g_{\rm m}$ plus the total resistance placed in series with the emitter.

EE105 Spring 2008 Lecture 7, Slide 14 Prof. Wu, UC Berkeley

Emitter Degeneration Example I

• The input impedance of Q₂ can be combined in parallel with R_F to yield an equivalent impedance that degenerates Q₁.

Lecture 7, Slide 15

Prof. Wu, UC Berkeley

Emitter Degeneration Example II

• In this example, the input impedance of Q₂ can be combined in parallel with R_c to yield an equivalent collector impedance to ground.

Prof. Wu, UC Berkeley

Input Impedance of Degenerated CE Stage

• With emitter degeneration, the input impedance is increased from r_{π} to r_{π} + (β +1) R_{F} ; a desirable effect.

EE105 Spring 2008 Lecture 7, Slide 17

Output Impedance of Degenerated CE Stage without Considering Early Effect

• Emitter degeneration does not alter the output impedance in this case. (More on this later.)

EE105 Spring 2008 Lecture 7, Slide 18 Prof. Wu, UC Berkeley

Capacitor at Emitter

- At DC the capacitor is open and the current source biases the amplifier.
- For ac signals, the capacitor is short and the amplifier is degenerated by RE. EE105 Spring 2008 Lecture 7, Slide 19

Example: Design CE Stage with Degeneration as a Black Box

• If $g_m R_E$ is much greater than unity, G_m is more linear.

Lecture 7, Slide 20