UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering

Department of Electrical Engineering and Computer Sciences

EE 105: Microelectronic Devices and Circuits

Fall 2017

Prof. Ming Wu

MIDTERM EXAMINATION #1

Time allotted: 80 minutes

First

Signature

STUDENT ID#: INSTRUCTIONS:

- 1. SHOW YOUR WORK. (Make your methods clear to the grader!)
- 2. Clearly mark (underline or box) your answers.
- 3. Specify the units of your answer to receive full credit.
- 4. Unless stated in the problem, use the values of physical constants provided below.
- 5. You can use approximations within 20% accuracy any time.
- 6. Calculator is allowed. (Cell phone is not allowed).

**** If you need more space for your answer, use the blank pages in the back. Clearly label which problem is your answer for ****

Commonly used constants and physical parameters:			
Electronic charge	q	$1.6 \times 10^{-19} \text{ C}$	
Boltzmann's constant	k	$8.62 \times 10^{-5} \text{ eV/K}$	
Thermal voltage at 300K	$V_{\rm T} = kT/q$	0.025 V	
Relative permittivity of Si	$\epsilon_{r,Si}$	12	
Relative permittivity of SiO ₂	$\epsilon_{r,ox}$	4	
Vacuum permittivity	ϵ_0	8.854x10 ⁻¹⁴ F/cm	

	Problem 1	20	
	Problem 2	30	
Points	Problem 3	20	
	Problem 4	30	
	Total	100	

1) A simple filter is shown below: (OpAmp is ideal)

- a) What is the transfer function $H(j\omega) = V_o/V_s$?
- b) What is the expression of low frequency gain in dB?
- c) What is the 3-dB frequency (in Hz) of the filter?
- d) Assume $C_1 = 100 \, pF$, $C_2 = 10 \, pF$, $R_1 = 10 \, k\Omega$, $R_2 = 1 \, k\Omega$, draw the magnitude Bode plot. Clearly label the graph, including all the breakpoints (in magnitude and frequency).
- e) Draw the phase Bode plot using the same numerical values. Clearly label the graph.

2) Consider the *stable* amplifier circuit below:

- a) Label the plus and minus terminals in the schematic above.
- b) Calculate the transfer function, assuming the op-amp is ideal.

Now, assume that the op-amp has a finite open-loop gain, A_0 , and a pole at frequency ω_0 .

- c) Write out the transfer function representing the op-amp's behavior in open-loop.
- d) Using this non-ideal op-amp, calculate the transfer function V_{out}/V_{in} .
- e) What are the locations of the poles and zeros?
- f) Assume the op-amp has the following metrics: $A_0 = 100$ dB, $f_0 = 50$ kHz. Can you make closed loop amplifiers with the following metrics?
 - i) Closed-loop Gain of 50, bandwidth of 100GHz.
 - ii) Closed-loop Gain of 1, bandwidth of 5GHz
 - iii) Closed-loop Gain of 0.1, bandwidth of 40GHz.

- 3) A non-inverting amplifier with variable gain is shown on the right. Here, $R_1 = 1 \text{ k}\Omega$ and R_2 is variable from $1 \text{ k}\Omega$ to $1 \text{ M}\Omega$. This input signal is a sinusoidal signal with an amplitude of 100 mV and a frequency of $\omega = 10^6 \text{ rad/s}$. The Op Amp has a slew rate (SR) of $1 \text{ V/}\mu\text{s}$.
 - a) First, assume the Op Amp has infinite bandwidth. If we gradually increase the gain of the amplifier by increasing R_2 , at what value of R_2 does the output become slew rate limited?

b) Now consider the Op Amp with a finite gain-bandwidth product of 100 MHz and $R_2 = 49$ k Ω . The input signal amplitude is fixed at 1 mV, but the frequency is gradually increasing from 100 Hz to higher frequency. Do we encounter bandwidth limit or slew rate limit first? What is that frequency?

- 4) Consider a p-n junction with N-type doping of $N_D = 10^{18}$ cm⁻³ and P-type doping of $N_A = 10^{16}$ cm⁻³. The length of the N- and P-doped regions are $L_N = L_P = 10 \ \mu m$. The cross-sectional area is $A = 10 \ \mu m^2$. Assume the intrinsic carrier concentration is $n_i = 10^{10}$ cm⁻³.
 - a) What is the built-in voltage of the p-n junction?
 - b) Is the depletion region mostly in the P-side or the N-side?
 - c) What is the depletion capacitance at zero bias?
 - d) This capacitance is bias dependent. At what voltage will the capacitance reduce to ½ of the zero-bias value? Specify the polarity of the bias (i.e., forward or reverse).
 - e) The small-signal equivalent circuit of a p-n junction is shown below. The P and N doped region forms a series resistance. Using the mobility chart below, find the series resistance at P and N region.

f) The small signal equivalent circuit of the p-n junction diode at reverse bias is shown below. What is the bandwidth of this device at zero bias? (*Hint: Bandwidth is defined as* the 3-dB cut-off frequency of $G(j\omega) = i_S/v_S$.)

