UNIVERSITY OF CALIFORNIA, BERKELEY

College of Engineering Department of Electrical Engineering and Computer Sciences

EE 105: Microelectronic Devices and Circuits

Fall 2017 Prof. Ming Wu

MIDTERM EXAMINATION #2

Time allotted: 80 minutes

NAME:			
(print)	Last	First	Signature
STUDEN	T ID#:		

INSTRUCTIONS:

- 1. SHOW YOUR WORK. (Make your methods clear to the grader!)
- 2. Clearly mark (underline or box) your answers.
- 3. Specify the units of your answer to receive full credit.
- 4. Unless stated in the problem, use the values of physical constants provided below.
- 5. You can use approximations within 20% accuracy any time.
- 6. Calculator is allowed. (Cell phone is not allowed).

**** If you need more space for your answer, use the blank pages in the back. Clearly label which problem is your answer for ****

Commonly used constants and physical parameters:					
Electronic charge	q	1.6×10 ⁻¹⁹ C			
Boltzmann's constant	k	8.62×10 ⁻⁵ eV/K			
Thermal voltage at 300K	$V_{\rm T} = kT/q$	0.025 V			
Relative permittivity of Si	$\epsilon_{r,Si}$	12			
Relative permittivity of SiO ₂	$\epsilon_{r,ox}$	4			
Vacuum permittivity	ϵ_0	8.854x10 ⁻¹⁴ F/cm			

	Problem 1	25	
	Problem 2	25	
Points	Problem 3	25	
	Problem 4	25	
	Total	100	

- 1) <u>Small Signal Response</u>. Consider the amplifier on the right, with the NMOS transistor operating in saturation.
 - a) Draw the small signal equivalent circuit, indicating very clearly the dependent sources. Include r₀, the FET drain-to-source resistance. Clearly label the three terminals of the FET.
 - b) Find the small signal voltage gain (v_{out} / v_{in}) of the amplifier assuming $r_0 = \infty$. Express your answer in terms of the transistor g_m and R_s ONLY.
 - c) What happens to the voltage gain as $R_S \rightarrow \infty$?

- 2) <u>Large Signal Response</u>: Assuming V_{Tp} , V_{Tn} , k_p , k_n are given for the PMOS and NMOS devices in the circuit on the right. The power supply voltage is V_{DD} .
 - a) What are the operating regions for M₂ (Saturation or triode)? Why?
 - b) Find values of V_{in} such that M_1 is in the saturation region (in terms of the given parameters).
 - c) What is the DC value of V_{out} (again, in terms of the given parameters)?

- 3) A MOSFET has a channel length L, width W, oxide thickness t, threshold voltage V_{t} , and power supply voltage V_{DD} . Now consider a modified transistor with
 - a) Channel length scaling: L are changed by a factor of k (i.e. L'=kL). All other parameters remain the same. How do the maximum drain current I_D (at $V_{GS} = V_{DD}$) and transconductance g_m (also at $V_{GS} = V_{DD}$) change? Express your answers in scale factor, k. Show your derivation.
 - b) <u>Uniform scaling</u>: W, L, t, V_t and V_{DD} are all changed by a factor of k. How does I_D and g_m change? Show your derivation.

Reference MOSFET:

Scaled MOSFET:

4) The circuit below is made with an ideal diode with the I-V characteristic given below. The input waveform is shown below. Assume the peak voltage $V_p > 3V$.

- a) Explain how the circuit works.
- b) Assume $R = \infty$, draw the output waveform on the right.
- c) Now consider a finite resistance value R such that $e^{-\frac{T}{RC}} = \frac{1}{2}$, where T is the period of the input waveform. Draw the qualitative output waveform on the right.
- d) What is the maximum and minimum output voltages in c)? Express your answers in V_p .

