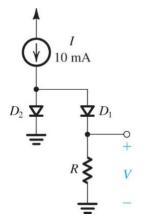
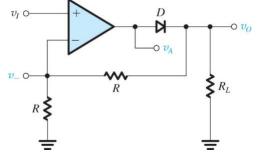

HW#4

(Submit to bCourses by 11 pm on 2/22)

1) A semiconductor is doped with As with an exponential profile:

 $N_D(x) = N_0 e^{-\frac{x}{d}}$ for x > 0, where $N_0 = 10^{18} cm^{-3}$ and $d = 1\mu m$.


- a) Derive the analytical expression of the electrical field in the region x > 0.
- b) Find the magnitude of the electrical field at $x = 1 \mu m$.
- c) What is the direction of the electric field?
- d) What is the direction of drift current? What is the direction of the diffusion current?
- 2) Find the voltage gain of the following circuits. Treat the Op amp as ideal.



- 3) The op amp in the precision rectifier circuit show below is ideal with output saturation levels of +/- 13V. Assume that when the conducting the diode exhibits a constant voltage drop of 0.7V. Find v_{-} , v_{o} , and v_{A} for:
 - a) $v_I = +1V$
 - b) $v_I = +3V$

c)
$$v_I = -1V$$

- d) $v_I = -3V$
- e) Find the average output voltage obtained with v_I is a symmetrical square wave of 1kHz frequency, 5V amplitude and zero average.
- 4) For the circuit below, both diodes are identical. Find the value of *R* for which V = 50 mV.

