HW#6

(Submit to bCourses by 11 pm on 3/15)

- 1) Calculate the total charge stored in the channel of an NMOS transistor having $C_{ox} = 9 fF/\mu m^2$, $L = 0.36 \mu m$, and $W = 3.6 \mu m$, and operated at V_{OV} = 0.2 V and V_{DS} = 0 V.
- 2) Consider a CMOS process for which $L_{min} = 0.36 \ \mu m$, $t_{ox} = 6 \ nm$, $\mu_n = 460 \ cm^2/V \cdot s$, and $V_t = 5 \ V$.
 - a) Find C_{ox} and k'_n .
 - b) For an NMOS transistor with W/L = $20 \ \mu m/0.25 \ \mu m$, calculate the values of V_{OV}, V_{GS}, and V_{DS,min} needed to operate the transistor in the saturation region with a dc current I_D = 0.5 mA.
 - c) For the device in (b), find the values of $V_{OV and} V_{GS}$ required to cause the device to operate as a 100 Ω resistor for very small v_{DS} ?
- 3) The NMOS transistor in the circuit below has $V_t = 0.4V$ and $k_n = k'_n(W/L) = 4 mA/V^2$. The voltages at the source and the drain are measured and found to be -0.6 V and + 0.2 V, respectively. What currents I_D is flowing, and what must the values of R_D and R_S be? What is the largest value for R_D for which I_D remains unchanged from the value found?

4) The NMOS transistor in the circuit below has $V_t = 0.5 V$, $k'_n = 0.25 mA/V^2$, $\lambda = 0$, and $L_1 = L_2 = 0.25 \mu m$. Find the required values of the gate width for Q_1 and Q_2 , and the value of R, to obtain the voltage and current values indicated.

