HW\#7

(Submit to bCourses by 11 pm on 3/22)

1) For the circuits below, $\mu_{n} C_{o x}=3 \mu_{p} C_{o x}=0.27 \mathrm{~mA} / V^{2},\left|V_{t}\right|=0.5 \mathrm{~V}, \lambda=0, L=1 \mu \mathrm{~m}$, and $W=3 \mu \mathrm{~m}$, unless otherwise specified. Find the labeled currents and voltages.

(a)

(b)

(c)
2) Consider the amplifier on the right with $V_{D D}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=24$ $k \Omega, k_{n}=1 m A / V^{2}$, and $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}$. Find the coordinates $\left(\mathrm{V}_{\mathrm{GS}}\right.$, $V_{D S}$) of the two end points of the saturation-region segment of the amplifier transfer characteristics (i.e., points A and B on Fig. 7.2(b) of the textbook).
3) Consider the circuit on of Problem 2) with $\mathrm{V}_{\mathrm{t}}=0.4 \mathrm{~V}, k_{n}=$ $5 \mathrm{~mA} / \mathrm{V}^{2}, V_{G S}=0.6 \mathrm{~V}, V_{D D}=1.8 \mathrm{~V}$, and $R_{D}=10 \mathrm{k} \Omega$.
a) Find the bias point, I_{D} and $V_{D S}$.
b) Calculate the transconductance g_{m} at the bias point.
c) Calculate the voltage gain.
d) If the NMOS has $\lambda=0.1 \mathrm{~V}^{-1}$, find the output resistance of the NMOS, r_{o}, at the bias point. Calculate the voltage
 gain considering r_{o}.
