

HW#7 (Submit to bCourses by 11 pm on 3/22)

1) For the circuits below, $\mu_n C_{ox} = 3\mu_p C_{ox} = 0.27 mA/V^2$, $|V_t| = 0.5 V$, $\lambda = 0$, $L = 1 \mu m$, and $W = 3 \mu m$, unless otherwise specified. Find the labeled currents and voltages.

- 2) Consider the amplifier on the right with $V_{DD} = 5$ V, $R_D = 24$ $k\Omega$, $k_n = 1$ mA/V^2 , and $V_t = 1$ V. Find the coordinates (V_{GS} , V_{DS}) of the two end points of the saturation-region segment of the amplifier transfer characteristics (i.e., points A and B on Fig. 7.2(b) of the textbook).
- 3) Consider the circuit on of Problem 2) with V_t = 0.4 V, k_n = 5 mA/V^2 , V_{GS} = 0.6 V, V_{DD} = 1.8 V, and R_D = 10 $k\Omega$.
 - a) Find the bias point, I_D and V_{DS} .
 - b) Calculate the transconductance g_m at the bias point.
 - c) Calculate the voltage gain.
 - d) If the NMOS has $\lambda=0.1~V^{-1}$, find the output resistance of the NMOS, r_o , at the bias point. Calculate the voltage gain considering r_o .

