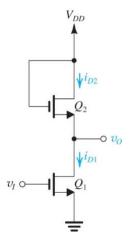
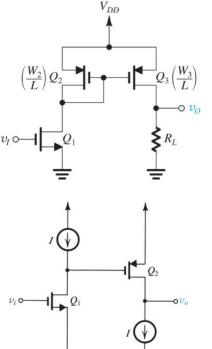
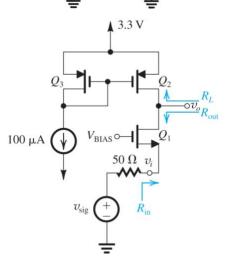
HW#8

(Submit to bCourses by 11:59 pm on 4/21, Sunday)

1) The circuit shown on the right is a common source amplifier with a diode-connected NMOS load, Q₂. Using $i_{D1} = i_{D2}$, show that for the range of v_I over which Q₁ is operating in saturation, that is, for


$$V_{t1} \le v_I \le v_0 + V_{t1}$$


the output voltage will b given by


$$v_o = V_{DD} - V_t + \sqrt{\frac{\left(\frac{W}{L}\right)_1}{\left(\frac{W}{L}\right)_2}} V_t - \sqrt{\frac{\left(\frac{W}{L}\right)_1}{\left(\frac{W}{L}\right)_2}} v_I$$

where we have assumed $V_{t1} = V_{t2} = V_t$. Thus the circuit functions as a linear amplifier, even for large input signals. For $(W/L)_1 = (50 \text{ um} / 0.5 \text{ um})$, and $(W/L)_2 = (5 \text{ um}/0.5 \text{ um})$, find the voltage gain.

- 2) The circuit here is an amplifier using a current mirror Q_2 - Q_3 . Here Q_1 is a common source amplifier fed with $v_1 = V_{GS} + v_i$, where V_{GS} is the gate-to-source bias voltage of Q_1 and v_i is a small signal to be amplified. Find the output voltage v_o and the voltage gain v_o/v_i . Also find the small-signal resistance of the diode-connected transistor Q_2 in terms of g_{m2} , and the total resistance between the drain of Q_1 and ground. What is the voltage gain of the CS amplifier Q_1 ? Neglect all r_o 's.
- 3) The amplifier here is formed by cascading two common-source stages. Assuming that $V_{tn} = |V_{tp}|$ and that the biasing current sources have output resistance equal to those of Q₁ and Q₂, find an expression for the overall voltage gain in terms o fg_m and r_o of Q₁ and Q₂. If Q₁ and Q₂ are to be operated with equal overdrive voltages, $|V_{OV}|$, fin dthe required value of $|V_{OV}|$ if $\lambda = 0.2V^{-1}$ and the required gain is 400 V/V.
- 4) In this common-gate amplifier, Q_2 and Q_3 are matched, $k'_n(W/L)_n = k'_p(W/L)_p = 4 \ mA/V^2$, and all transistors have $|V_t| = 0.8V$ and $\lambda = 0.05 \ V^{-1}$. The v_{sig} is a small signal with no dc component.
 - a) Ignore λ , find the dc drain current of Q₁ and the required value of V_{BIAS} .
 - b) Find the values of g_m and r_o of all transistors.
 - c) Find the value of R_{in} .
 - d) Find the value of R_{out} .
 - e) Calculate the voltage gain v_o/v_i and v_o/v_{sig} .
 - f) How large can v_{sig} be (peak-to-peak) while maintaining saturation mode operation for Q_1 and Q_2 ?

