UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

T.K. Gustafson

183M Cory Hall

Office Hours: Tu 9:30-11:00, Th 9:30-11:00; or by appointment

email: tkg@eecs.berkeley.edu

Lectures: 299 Cory Hall 4:00-5:30 W,F.

EECS 118: Optical Communication Systems

Problem Set No. 1: General Introductory Principles

Problem 1) Wave Concepts

Write the equation for a wave with amplitude 3 Volts/cm , wavelength $5 \cdot 10^{-4}$ cm and frequency $3 \cdot 10^{13}$ Hz.

- b) What are the period and angular frequency of the wave?
- c) In what part of the electromagnetic spectrum is the wave?
- d) What is the phase velocity of the wave?
- e) What is the " index of refraction "?

Problem 2) Fiber Attenuation

A fiber 50 km long has an attenuation of .5 dB/kms. Two such fibers are spliced together to form one fiber 100km long. The splice has a loss of .3dB and the connectors at each end have losses of 1 dB.

- a) What is the total loss between the transmitter and receiver?
- b) What is the power into the receiver when the power output from the transmitter is 1 mW?

Problem 3) Pulse Spreading in a Fiber

For a particular single mode fiber, the dispersion coefficient is 10 ps/nm/km. So:

How much does a 1ps pulse broaden when propagating 10 km if the initial pulse is "bandwidth linited"?

Problem 4) Amplitude Modulation

The intensity of a lightwave carrier is modulated by a signal $mx(t) = 0.8cos(\omega_1 t)$.

Calculate the amplitude spectrum to within 5