UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

T.K. Gustafson

459 Cory Hall

Office Hours: Tu 9:30-11:00, Th 9:30-11:00; or by appointment

email: tkg@eecs.berkeley.edu

Lectures: 299 Cory Hall 4:00-5:30 M, W

EECS 118: Optical Communication Systems

Problem Set No. 3: Probability, Channel Capacity, and S/N ratio Calculations

Problem 1) Channel Capacity

Consider a CD recording. Assume a speed of 7500 rpm and a typical radius of 10 cm. Assume the spot size of the storage pits is 2 μ m .

- a) What is the maximum number of bits which can be stored (for binary storage)?
- b) For the rpm of 7500, what is the maximum read bit rate?
- c) If a signal to noise ratio of 35 dB is to be guaranteed, what sampling band-width can be used?
- d) For binary transmission, what channel bandwidth is needed? How can this be reduced?
- e) How many bits per sample are there?
- f) If the area of the laser beam focussed on the spots is 1mm, what focal length lens is needed?
- g) What is the advantage of a blue laser in contrast to a red one? How else might the storage capacity and bit rates be increased?

Problem 2) Probability

- a) Starting with a signal $f(t,z) = \sin(\omega t kz + \Delta\phi)$, show that if $\Delta\phi$ is a Gaussian random variable with a mean-square deviation given by constant, σ^2 multiplied by t, then f(t) when average decreases exponentially with time. (Take z = 0).
- b) Show that in the limit as the average of a Poisson distribution becomes large, it goes over to a Gaussian distribution with a standard deviation equal to that of the Poisson.

Problem 3) Receiver Sensitivity Calculation

A PCM receiver must have a signal to noise ratio of at least 20 dB to function with an adequate probability of error. The receiver uses a PIN diode with a responsivity of .7 amps/Watt. The rms noise in the receiver is 7 μ Volts, due primarily to thermal noise; the shot noise and amplifier noise are negligible.

a) What is the sensitivity of the receiver?

Problem 4) APD Noise Calculation

An optical receiver uses a detector with a current gain G_m of 50 and an excess noise factor F_A of 5. The responsivity \mathcal{R} is .7 amps per watt. The photodetector load impedance consists of $R=800~\Omega$ and $C=.10~\mathrm{pF}$ in parallel. The noise of the amplifier following can be included as a noise voltage in series with the amplifier input (which has an infinite input resistance). The amplifier has a bandwidth of 1 GHz.

- a) Calculate the total rms noise voltage referred to the input of the amplifier when the optical power is 0.1 μ W .
- b) What is the signal to noise ratio?