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Problem Set No. 3

Problem Number one )Cardinal points of a lens (This is a modification of 6.18 of the text)
A thick biconvex lens has radii of 20 ecm and is 5 cm thick. The lens refractive index is 1.5.
a) Find the ABCD parameters (help! The numbers are 1.0133, .0378, .8 and 1.0167)

b) Deduce the cardinal points in terms of the ABCD parameters generally. ( I get the nodal
points are N, and N; (A-1)/C and (1-D)/C, respectively. The fii= - D/C The unit planes
are -(A-1)/C for the image and (-1+D)/C for the object ). Of what use are these?

¢) What are the cardinal points for the above lens?

Problem Number two ) The microscope and the telescope contrasted

a) The pupillary diameter of the typical eye is 2mm and the objective lens of the telescope
is imaged on the eye. If the objective is 20 mm in diameter and the focal length is 250 mm
What is the magnification of the telescope?

What focal length ocular (eyepiece) should be used?

Find the position of the exit pupil.

What would be the diameter of the exit pupil if the ocular gave a magnification increased
by 50 percent ? Decreased by 50 percent ?

b) The first microscope was a clear glass marble resting on the object to be magnified. ( van
Leeuwenhoek (1632-1723)). What is the power (1/f in m™! of a marble lem in diameter ( n
=Nleh o

Problem Number three ) A re-entrant confocal resonator cavity
Hecht Problem 6.24. Is the cavity stable? The confocal configuration is popular as an optical
spectrum analyzer. We hope to discuss this.

Problem Number four ) Lens correction of the eye.

A myopic individual has his far-point of best vision at 16.6 cm and his near -point at about
6.5 cm. What is his range of accomodation ( in D’s)? What spectacle correction will restore
his far-point to infinity? What will then be his new near-point? ( Comparable to text prob
5.85 and 5.86 )



Problem Number five ) Oil immersion objective.

Consider a transparent sphere of radius R and index n. Show that a point P at radius R/n
is perfectly imaged to a point Q at radius n R and in fact a spherical surface of radius R/n
is imaged to a sphere of radius n R. The points P and Q are called aplanatic points. This is
the basis of the oil emersion microscope ( see page 255 -257 of text ) ( reference Sears Optics

third ed. )

Problem Number six ) Off axis focal distances.

a) Show that for a thin lens with an on-axis focal length, for a point off the axis by 6 (w.r.t
the optic axis ), the sagittal and tangential ray bundles focal lengths are f/cosf and fcosé
respectively.

b) Similarly establish that the sagittal and tangential ray bundles traversing a Brewster
window travel effective distances given by

dy = t(n? + 1)12 /n?

and
d, = t(n? + 1)Y/?/n?
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-axis- At is customary to replace the corresponding 6 by e = né,
where n is the refractive index at the z-constant plane.

In Figure 2.7, the ray passes through the input plane with
coordinates (x,, =, = n0,), then through the optical system, and
finally through the output plane with coordinates (x,, &, = n,8,).
In the paraxial approximation, the corresponding output quantities
are lincarly dependent on the input quantities, We can, therefore,
represent the transformation from the input to the output in matrix

form as
Y21 (o @\ ™
[%)_[{ @)(m}' (2.4-1)
B

cax sloperng vy Slope ki
The &@/#+£% matrix in Eq. (2.4-1) is called the ray transfer matrix
and, as we shall see later, it can be made up of many matrices to
account for the effects of a ray passing through various optical

elements. We can consider these matrices as operators successively .

acting on the input ray coordinate vector. We state here that the
determinant of the ray transfer matrix equals unity, that is, &2 —
#B# = 1. This will become clcar after we derive the translation,
refraction, and reflection matrices.

Let us now investigate the general properties of an optical
system from the &/#€% matrix. b

Property 1: If 2 = 0, we have from Eq. (2.4-1) that «, =,

€x,. This means that all rays crossing the input plane at thc same
point, namely, x,, emerge at the output plane making the same
angle with the axis, no matter at what angle they enter the system.
The input plane is called the front focal plane of the optical system
[see Figure 2.8(a)]. '

Property 2: If # =0, x, = &/x, [from Eq. (2.4-1)]. This
means that all rays passing through the input plane at the same
point (x,) will pass through the same point (x,) in the output plane
[see Figure 2.8(b)]. The input and output planes are called the
object and image planes, respectively. In addition, /= x,/x, gives
the magnification produced by the system.

Furthermore, by inverting the &/%<2 matrix and from the
fact that &9 — B¢ =1, we note from Eq. (24-1) that
X, = Dx, =1/ )x,, because & = 0. The implication of this is
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Figure 2.8 Rays at input and output planes for (a) 2 =0, (b) @ =0,

(c) €=0, (d) the case when the planes are nodal planes, and
(e) &= 0.

that the point x, is imaged at x, with magnification 1/87. Hence,
the two planes containing x, and x, are called conjugate planes.
Moycover, if &7= 1, that is, the magnification between the two
conjugate planes is unity, these two planes are called the wnit, or
principal, planes. The points of intersection of the unit planes with
thc_ optical .a.xjs are the unit, or principal, points. The principal
points constitute one set of cardinal points,

Prgpen‘y U =0, »,= D w,. This means that all the
rays entering the system parallel to one another will also emerge
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parallel, albeit in a new direction [see Figure 2.8(c)]. In addition,
Dn,/n,) = 0,/0, gives the angular magnification produced by the
system. :

If 9 =n,/n,, we have unity angular magnification, that is,
8,/0, = 1. In this case, the input and output planes are referred to
as the nodal planes. The intersections of the nodal planes with the
optical axis are called the nodal points [see Figure 2.8(d)]. Thc
nodal points constitute the other set of cardinal points,

Property 4: 1f .o/= 0, x, = #«,. This means that all rays
entering the system at the same angle will pass through the same

point at the output plane. The output plane is the back focal plane
of the system [see Figure 2.8(e)].

2.4.2 Translation and Refraction Matrices

When a ray passes through an optical system, there are
usually two types of processes, translation and refraction (and,
sometimes, reflection; this is treated later), that we need to consider
in order to determine the progress of the ray. As the rays propagate
through a homogeneous medium, they undergo a translation pro-
cess. In order to specify the translation, we need to know the

thickness of the medium and its refractive index. However, whén a -

ray strikes an interface between two regions of different refractive

indices, it undergoes refraction. To determine how much bending
the ray undergoes, we need to know the radius of curvature of the

boundary and the values of the refractive indices of the two regions.
We shall investigate the effect each of these two processes has on
the coordinates of a ray between the input and the output planes.
In fact, we will derive the ray transfer matrices for the two pro-
cesses.

Figure 2.9 shows a ray travelling a distance d in a homoge-
neous medium of refractive index n. Because the medium is homo-
geneous, the ray travels in a straight line. The set of equations of
translation by a distance d is

xy=x, +dtané, = x, + 0,d, (2.4-2a)

no,=n, or =z =e.

(2.4-2b)

These equations relate the output coordinates of the ray with its
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Figure 2.9 A ray in ahomogenous medium of refractive index n,.
input coordinates. We can express this transformation in matrix

form as
=k )

The 2 X 2 ray transfer matrix, called the mranslation matrix G s
defined as

(2.4-3)

T (1 a'/n). (2.4-9)

IRl

Note that its determinant is unity.

(3)
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Example 2.8 Imaging by a Thick Lens; Cardinal Points

In Example 2.4, we wrote down the system matrix . for a
thick lens in terms of the radii of curvature R, and R, of both
surfaces and the thickness of the lens, In the discussion that
follows, we will symbolically write the elements of ./ in Eq.
(2.4-14) as

¢ &

As in the thin-lens case, we can study the imaging properties of a
thick lens in air by considering the input and output planes to be
located at distances d, and d, from the front and back refracting
surfaces, respectively, as shown in Figure 2.16. We can find the

Unit planes
Air \ Air
Optical system
o
d,

/

e {a- ¢ ) (2.4-25)

%

[
684§

Xy =X,

Input (object) plane Output (image) plane

Figure 2.16 Unit planes for an optical system. A ray starting from any height
x, from the input unit plane will cross the output unit plane at
Xy = Xy.

output ray coordinates (x,, ,)” in terms of the input ray coordi-
nates (x,, )" as

2 | dz) . ok L Xy
[”2] (0 1 (c-, vl [0 1 ] (#1} e
translation thick lens translation .

e+ od, ad, +.,4+ad1d2+ﬁ-/d2}(x;

. (2.4-26b
e odl + & =y ) ( )

Once again, to find the location of the image (d,), we consider a
point object located on the axis in the input plane, that is, take
x; = 0. Because the image should also be a point on the axis, we
can set x, = 0 in Eq. (2.4-26b). This gives

ed, + & + edd, + a/dz = (), (2.4-27)
from which we can easily solve for d, in terms of d;. Also, the
image magnification can be found using Eqs. (2.4-26) and (2.4-27) as

X
x—f = (& + od,). (2.4-28)

It is instructive, at this point, to determine the cardinal
points of our thick-lens imaging system. By setting x,/x, = 1 and
making use of the fact that the determinant of the matrix in Eq.
(2.4-26b) is equal to unity, we find the locations of the two unit
planes 4,, and d,, as

d e da =

u (2.4-29)
The two unit planes are shown in Figure 2.16. Next, to find the
nodal points, we set «, = »,. From Eq. (2.4-26b), we find the
locations of the two nodal points d,, and d,, as

Ll me -2

dln =t dln’ d?.n = —aH" % dZu' (24'3{])
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It is important to note that these elements are arranged in the inverse order of the
system, o in a right-to-left order. The system matrix then takes the form \{0&‘\\}

bl & oS S M
S = = [4-7)
s=diie 3 A 0
and this set of four numbers contains the essential first-order properties of the sys-
tem, : ;
A useful property of the system matrix is its determinant. Because the determi-
nant of the system matrix is always unity, it provides a way of checking the system

matrix for arithmetic errors. It will not, however, detect an crror in the.ordering of
or construction of the matrices making up the system.

A thick biconvex lens has radii of 20 cm and is 5 cm thick,.as
shown in Figure 4.6. Find its system matrix. The lens refractive
index is 1.5. '

The matrices are found using equations (4-4) and (4-5).
PR LN Wy ;

1.5~ 1.0 -t
| 554 ]y o
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R=20cm 15cm R=20cm T

FIGURE 4.6. Example 4.5 Q)UUAQ.

2

Note in 9}, the order of the refractive indices: the ray goes from CU’L
the lens with index 1.5 into air with index 1.0. Also, the cenler
of curvature for M, is to the left of the surface, so that its radius
is negative.

Coell Cov

EXAMPLE 4.6

The system matrix is given by
§= ntg%]ﬂh

Note the ordering of the matrices. When we r
trices using the rules in Appendix I, we gel

= [0.9168 —(J.(]479]

3.33 0.9168

. which has determinant 1.0001. The values of th

| a=00479 = ~C \
b=09168 = ©
¢ =0.9168 P

= —ai33 = %

I

{1

Note that the signs here refer to equation (4-7)
d terms of the matrix are negative.

A negative lens has the following parameters:
= 1.50,t= 1.2 cm, and R; = 30 cm. Find thi
The system matrix is given by

e R e
30 17
0 1 1.50 0

which after multiplication gives

1.0133 0.0378
0.8 1.0167

THE CARDINAL POINTS

‘We noted previously that the system matrix contains the ess
erties of the lens system. These properties are called the ca,
sist of pairs of conjugate elements, First are the focal plane
conjugate with the two infinity points of the system, one to t
the right. Second are the unit planes or principal planes u,, un
the system between which the magnification is unity. Final




i, 1w

!
r
=
SN

z Ficure 4.7. The cardinal points of an optical system.

points N, and Nj, lwo points lying on the optic axis between which the incoming
object ray and the outgoing image ray make equal angles. The cardinal points are
illustrated in Figure 4.7, It is important to note that although the unit planes and the
nodal points in the figure are shown within the system, in some cases one or more
of them may be external to the system.

In thick lens systems, the focal lengths, which we call the effective focal lengths,
are measured from the unit planes. The distances from the surfaces to the focal
points are called the back focal length, bfl, and the front focal length, ffl. One must
be clear when specifying the focal length of a system to identify which one is be-
ing stated. The common practice is to give the effective focal length of a lens sys-
tem, 5o that if one simply has the focal length, one can generally assume it to be the
effective focal length, In terms of the matrix clements the effective focal length is
given by .

f=% B i— L‘{M’\“v‘\ [4-8]

so that we immediately see that in the system matrix the element a is the power of
the system. The back focal length is given by

- o
bfl—a [4-9]

The bfl is the conjugate with (he object-side infinity and is the distance from the
last surfuce of the system to the focal plane. The effective focal length conjugate
with the image-side infinity is = l/a, and the front focal length is given by

b

ffl= -2 (4-10]

The unit planes are given by

M =]
1" a
and

Hoin L= ih

n, a

where u, is the object-side unit plane, and «; the ima ge-
the relil'ractive index of the object's medium and n; that «
see that the unit planes are helpful in sketching systems
images,

The nodal points are given by

Vo
n
_Q’L_.(' 3
JE a— _p
and
z/,/D
1y
Rl fl,,hb
n; @y —3

where 1, is the medium to the right (image) side of the syst
If these media are the same—for example, in the typical ¢
air—then the nodal points coincide with the interseetion o
optic axis. The nodal points come into play only when tl
ferent from that of the object, as is the eye, for cxample. |
points but unit planes and focal planes, since an extende
aged ut the focal plane, which includes the focal point wh

(i

d=-333

axis,
AMPLE 4.7 Find the cardinal points and the bfl of the s
1. The matrix elements for the lens are
a=0.0479 :
b=c=09168 f




The focal length is given by equation (4-8)

f= 7 = 00479 20.88 cm

Because the lens is in air, the nodal points and the principal
planes coincide, and these are given by equations (4-11) and

(4-12):
e OB .
= e T o el
GoilEl e e

a 0.0479

and the principal and nodal planes lie within the lens itself. Note
that uj is measured from the last vertex, and u, from the first ver-
tex of the system.

We find the bfl using equation (4-8):

2 - 00479 19.14 cm

EXAMPLE 4.8 What is the bfl of the lens in Example 4.6?

SOLUTION: The bfl is given by equation (4-8) as,
coacbOndE
2~ —00378 26.81 cm

Note the signs of a and of the bfl. The bfl is measured from the
last vertex of the system through the lens and falls 26.81 cm to
the lefl of the last vertex of the system.
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by the objective O. Theimage I serves as a virtual object for the ocular E,
The final image I’ is virtual and erect, as indicated. The angular magnifi-
cation of this telescope is also given by

1Y
st

but since f; is negative, 7y is a positive quantity and the image is erect.

The distance between objective and ocular is the difference between (the

absolute values of) their focal lengths. Consequently this instrument may
be made much more compact than the astronomical type. Its chief dis-
advantage is that it cannot cover as wide a field of view without the use
of objectives of unduly large diameter. The ‘“‘opera glass” is a Galilean
telescope.

6-8 Normal magnification. Thus {ar nothing has been said regarding
the diameters of the lenses in a telescope; the magnification involves only
the ratio of foeal lengths. To see how the diameter of the objective sets
a limit to the useful magnification, let us consider the optical system of o
refracting telescope from a somewhat different viewpoint.

The ocular of a telescope, as well as imaging the image formed by the
objective, also forms a real, reduced image of the objective lens itsell in

Fia. 6-23. (a) The ocular of a telescope forms a real, reduced image of the objective
lens. (b) Rays from a distant object are refracted by a telescope und pass through the
exit pupil B, The exit pupil lies at the same point, and has the same diameter, as the

image of the objective lens. 5 i
P Al Virtoel Unage at ©

s
R R T L
Py

Problem & = Takew Tvsu Seaps . ()

NORMAL MAGNIFICAT] ON

e space beyond the ocular.
is refracted by the ocular,
ctive, which is called the exg

All of the light that enters the object
must pass through this image of the

pupil of the telescope. The diam
transmitted beam is a minimum in the plane of the exit pupil i

.6-2\’-{ (b).) If a.ll of the transmitted light is to enter the pupil of
lvili 8 eye, the d{ameter .of the exit pupil of the telescope shotﬂd be nt
r than the pupillary diameter of the eye. In practice, the eye ys

lly placed at the exit il which i
g pupil which is also called the eye point of

Let_us assume_that the object. bein
med b he aenlar aye at infini
d: ed as the object for the ocular,

asured from the first focal point

|

g viewed and the yirtual in;Cl.i(

. If the objective lens is con=
the object distance ¢ in Fig. 6-23
Fy of the ocular, is

I T = [, l Depends UPow

?;:; f; Ii§ ti;n_a tocal (;e:lgl)gth of the objective lens. Let D be the diame4er
Jective an " the diameter of its ima, iti
t : . ge. By d
eral magnification of the image of the objective ig e

D!
2 m = —;
from Eq. (4-15), D
m= — -I? H
. x
here fs is the focal 1 y i
g.né)’ cal length of the ocular, Then (dlsregarding algebr:
D
; D’ f? f!
But i equals th 3 i i
Y. | € angular magnification of the telescope, v. Hence
D
A= Dt’ (‘B‘I

1e angular magnifieation ec
E‘tD the diameter of its image formed by the ocul
_;nc:denl.ully, Eq. (6-4) indicates a conve o
angular magnification of a telescope.
wrd a bright sky and a screen moved a
ter of the transmitted beam is found
:of the diameter of th
smitted beam,

1uals the ratio of the diameter of the ol
. ar, or the exit pupi
onvenient method for measurin
The instrument may be directe
long the axis until the minimur

i - Fhe pmgniﬁcatiun is then th
€ objective to the minimum diameter of th
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(WA ...}hg_-.
r —
@- 5.‘.. - [Cuar. 4
: l
les S : slopet sawme
.}tu:f?rc; She similar triangles @4 B and FQB, \
! — ! A — -—
‘ecXxive Yimm o Y % = %- (4-10)
)’D\eu W Ll ke

and from the triangles ABQ' and AH'F’,

i
Ve U S *%l (4-11)
o _ .
When Eqs. (4-10) and (4-11) are added, we get
et e b I R e
Sk e e
or
L (4-12)
§+ )
When liq. (4-8) is divided by Eq. (4-9) we get
J.rz
)
or
a = f* (4-13)

The lateral magnification m is the ratio of y’ to y. Dividing Eq.

(4-10) by Eq. (4-11) gives

(4-14)

Also, from Eqs. (4-8) and (4-9),

(4-15)

JiLs=t e

L
f

Bq. (4-12) is known as the Gaussian form of ‘the len.wi e.qua't\‘nn,qa‘ffnlli
the mathematician Karl F. Gauss. (Gauss's law in Biﬂ(‘..tlﬁbﬁﬂ.tmb, ;1.. .:1
ag the unit of magnetic flux density :m the electr?nmgnetlc r;iy's.te:;l ?V::(llnbhl
the gauss, take their names from him also.) Iq. (4-13), first dert \

v o 03 & [xaRy] . me-d
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ir Isaac Newton, is the Newtonian form of the lens equation. The
Gaussian form is probably more familiar, but the Newtonian equation is
Igebraically simpler. Notice carefully that in the former equation ob-
ect and image distances s and s’ are measured from the principal points
H and H' respectively (or from the center of a thin lens), while in the
atter, object and image distances x and 2’ are measwred from the focal
oints F and F'.

* The lateral magnification m can be expressed either in terms of s and
', by Eq. (4-14), or in terms of z, #’, and f, by Eq. (4-15).

- BExample. An object is located 30 em to the left of s thin lens of focal length
0 ¢m, as in Tig. 4-6. Find the position and lateral magnification of its image,
sing both the Gaussian and Newtonian forms of the lens equation.

The object distance s, measured from the center of the lens, is +30 em. From
he Gaussian equation,

1 1 1
it
8’ = 460 cm.

The image is real (s’ is positive) and lies 60 em to the right of the center of the
ens.

i The object distance x, measured from the first focal point, is +10 cm. From
|the Newtonian equation,
: L 10z’ = (20)?,
' = 440 cm.

. This js evidently in agreement with the answer above. The lateral magnifi-
cation, by Bq. (4-14), is

60

30

. The image is inverted (i is negative) and twice the height of the object.
. From Eq. (4-15),

m =

-2,

Qe

= xaule of _Gausdiau Foy bw—@%—l«:e-bcs-ifcl._m |

In the seven parts of Fig. 4-8, a number of rays from the head of an
ow representing an object O have been traced through a thin lens of
ocal length f. Lens aberrations are neglected, The image of the head

the arrow has been located by using two (in some cases, all three) of the
s referred to in Fig. 4-6. In addition, the outermost rays incident on
he lens have been drawn. The object distances are respectively, +3f,

2f, +31, +/, +%f, 0, and —2f. In parts (1) to (5) inclusive, the object

£
boi ‘%/Q = CL\I\\AU-\ o mo_(\.km{-gic.a:\low [:,rk e .‘EA%?Q :
A
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A

The normal magnification of a telescope is defined as that at which the -
diameter of its exit pupil is just equal to the pupillary diameter of the eye,

usually assumed to be 2 mm.

L
Example. The objective lens of a telescope is 20 mm in diameter and its focal-f:
length is 250 mm.
(a) What is the normal magnification of the telescope?
(b) What focal length ocular should be used?
{(¢) Find the position of the exit pupil. T
(d) What would be the diameter of the exit pupil if an ocular were used Whlch !

gave & magnification 50% in excess of normal? 4
(e) What would be the diameter of the exit pupil if the magnification were 509, {

of normal?

Assume all lenses to be thin.
20
<

(2) From Eq. (6-%), v = % == = 10x%.

-l-:-—-')'
S e

g

fb)7=-’3: i =

(c) ' = J-’I_B;_IO = 2:5 mm.

That is, the exit pupil is 2.5 mm to the right of the second focal point of the ocular,
or 27.5 mm to the right of the ocular itself.

(d)1f7=15x,D’=2=2~i_j=1.33mm.
e
(e) If7=5X,D'=§=4mm.

e PO NIRRT v
FINSYICYE LD R O« O o\ &yt o
EXAMPLE 5.4. What is the power of a glass marble such as Leeuwenhoek was
reputed to have used if the marble is 1 cm in diameter and has a

refractive index of 1.507

——

SOLUTION: The system has the matrix representation
P -1el U Oh -180=1) rie667 -0.66667
0 1 735 o 3 0.6667 0.33333

with determinant = 1.00000. The focal length 1/a = 1.5 cm, or
0.015 m, and the power is 66.67 D.
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Spectacle lenses, or eyeglasses, are an additional optical element added to the
eye system. In contrast, contact lenses provide an artificial surface to the cornea
and correct vision by changing the comeal power. In either casc, the correction
usually returns vision to its near-optimal state with a full range of accommodation.

The 10 D range of accommodation mentioned is that for a typical person of col-
lege age. As one ages, the lens of the eye continues to grow and fills the sack in
which it sits. The result of this growth, known as preshyopia, aging eye, is that the
range of accommodation is reduced from 10 D to about 1 D at age 65. At 45 years
of age the range on average is about 3 D, so that the nearest clearly imaged object
is at 33 cm. Since optimal reading and viewing distance is usually taken at 25 cm,
some visual correction is necessary. This is usually in the form of reading glasses
or bifocal spectacles. Bifocal correction is increased regularly until it reaches 3 to
3.5 D at about 65 years of age, after which no further change is usually required.

-'?-tUr stq"’l’red
5.1 A myopic individual has his far-point of best vision at 16.6 ¢cm

j_ef_"‘ OWY " " and his near-point at about 6.5 cm. What is his range of accom-
e modation? What spectacle correction will restore his far-point to

SOLUTIO

i infinity? What will then be his new near-point?

N: - The far-point of 0.166 m implies a power of 1/0.166, or 6.0 D,
- and the near-point of 0.0625 implies a power of 16.0 D, thus
giving an accommodative range of 10 D. The eye is 6.0 D too
strong, so the spectacle correction should be —6.0 D. The range

near Sl%t'l'\efi of accommodation will remain the same at 10 D. The new near-

. point will be 1/10 D or 0.1 m (10 cm).
"—-ﬂ.@ ‘c'd.k X

EXAMPLE

~ SOLUTIO

5 2 A hyperopic individual has a near-point of 1.5 m. What correc-
tion is necessary to move the near-point to 25 cm?

N: Using a spectacle lens we need to map objects at 0.25 m onto a

: plane at a distance of 1.5 m. Using a thin lens and equation (4-
1), we obtain

1 1
~=0.25 ' =15

and P = 3.33 D. Spectacle lenses are usually available in 0.25
D steps, so that a +3.25 D lens would be used.

—

- 4l g

(1 £)
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