
EE119 Homework 3

Professor: Jeff Bokor GSI: Julia Zaks

Due Monday, February 16, 2009

1. In class we have discussed that the behavior of an optical system changes when immersed
in a liquid. Show that the longitudinal image magnification for an optical system not
immersed in air is (n2/n1)m2, where the object is immersed in a material of index n1 and
the image is immersed in a material of object n2. You can also refer to the diagram on
the bottom of p. 17 of the notes for the labeling of n1 and n2.

Solution:

On p. 18 of the notes we are given that the lens law is

n2

d2
=

n1

f1
+

n1

d1

d2 =
n2

n1
f1

+ n1
d1

=
n2

n1

1
1
f1

+ 1
d1

=
n2

n1
d2original

and the longitudinal magnification now is

∂d2

∂d1
=

n2

n1

∂d2original

∂d1
=

n2

n1
m2

for the front and back focal length of a lens.

2. You will explore some of the differences between real and paraxial rays in this problem.
For each part below, trace the specified ray and determine where it crosses the optical axis.
Show all calculations and include a diagram. Report your answers to 4 decimal places.

(a) Find L when θ = 5◦with real ray (no paraxial approximation).
Solution:
First we need to find the incident angle I. From the law of sines, we know that

R

sin(θ)
=

P + R

sin(180 − I)
=

P + R

sin(I)

So, rearranging, we get that

I = sin−1(
P + R

R
sin(θ)) (1)

We can use Snell’s law to solve for I ′

n1 sin(I) = n2 sin(I ′). (2)
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Since L = R + OP ′, we need to solve for OP ′. By the law of sines,

R

sin(ϕ)
=

OP ′

sin(I ′)

From geometry we see that I = θ + I ′ + ϕ, and we can solve for ϕ since we already
know θ, I, and I ′, so

OP ′ = sin(I ′)
R

sin(I − θ − I ′)
.

And we get that

L = R + sin(I ′)
R

sin(I − θ − I ′)
= R(1 +

sin(I ′)
sin(I − θ − I ′)

) (3)

Plugging in numbers, I = 31.5293, I ′ = 24.9972 and L = 168.0442. I used the follow-
ing matlab code for this:

theta=0.5*pi/180
P=50
R=10
n1=4/3
n2=1.65

I=asin((P+R)*sin(theta)/R)
Iprime=asin(n1*sin(I)/n2)

L=R*(1+sin(Iprime)/sin(I-theta-Iprime))
sols=[I*180/pi, Iprime*180/pi, L]

Lparaxial=n2/(-n1/P+(n2-n1)/R)

(b) Find L when θ = 0.5◦with real ray (no paraxial approximation). Using the above
matlab code gives I = 3.0013, I ′ = 2.4249, L = 327.3102cm

(c) Repeat part (a) with the paraxial ray (paraxial approximation).
In the paraxial approximation, we have the relationship

n2

L
− n1

−P
=

(n2 − n1)
R

So, with numbers,

L =
n2

n1
−P + (n2−n1)

R

=
1.65

4/3
−50 + (1.65−4/3)

10

= 330.00cm

(d) Repeat part (b) with the paraxial ray (paraxial approximation). In the paraxial
approximation, L is the same, and is again 330.00

(e) Is there a difference between your answers in (a) and (b)? Is there any difference
between your answers in (c) and (d)? There is a difference between the answers of a
and b, but not between answers of c and d.
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Part (b), (c), and (d) are very similar. This is because the paraxial approximation 

is good at small angles. Notice that the paraxial approximation applies to the 

!"#$%&'(&")*&*+%&!"#$%& ,&-).&/0#+*&!11./%&*+!*& 23º is good enough to use the 

paraxial approximation, but the angle I = 31.53º due to the curvature of the lens, 

which is hardly small! 
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Figure 1: diagram for problem 2.

(f) Now compare your answers in (b) and either (c) or (d). Why are they so similar?
The answers in c and d are similar to b because 0.5 is a small angle and the paraxial
approximation is pretty valid. However, even though 5◦is pretty small, the incident
angle of 30 is not small at all!

3. Consider a thin, spherical plano-convex lens having a radius of curvature of 50.0mm and
a refractive index of 1.5.

(a) Determine the focal length in air.
Solution:

1
f

= (nl − 1)(
1

R1
− 1

R2
) = 0.5 × (

1
50

− 0) =
1

100

So the focal length is 100 mm.

(b) Suppose this lens is placed right on the surface of a tank of water. At what depth
below the surface would a collimated light beam from above come to a focus? (The
refractive index of water is 1.3.)
Solution:
We use n1

f2
= n2

f2
to get that the focal length in water is 130 mm=1.3 cm. If you use

the lensmaker’s equation and assumed that the lens is covered in water, you would
get

nmedium

f
= (nl − nmedium)(

1
R1

− 1
R2

) = 0.2 × (
1
50

− 0) =
2

500

so the focal length would be 1.3 × 250 = 325 mm in water. This isn’t a completely
accurate interpretation of the problem, but if I took off points for this answer I’ll give
you the points back.

4. A spherical wave can be mathematically described by:

E =
E0

r
Re

(
e−ik·r+ϕ

)
=

E0

r
cos(−kr + ϕ)
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Where r is the distance of the wave front from the source in 3D space, k is the wave vector
(the amplitude of k is given by 2π

λ , and ϕ is a constant phase. In this problem, the optic
axis is on the z-axis.

(a) Show that at a large distance from the point source, close to the optic axis, at constant
z, the wave can be approximated by

E =
E0

z
cos[−k(x2 + y2)

2z
+ ϕ]

In this approximation, z ≫(x,y). Hint: the taylor expansion of
√

1 + x for x ≪ 1 is√
1 + x ≈ 1 + x

2 .

Solution:
Going from spherical to cartesian coordinates gives r =

√
x2 + y2 + z2. When z ≫

(x, y), this expression can be rewritten and Taylor expanded

r = z

√
1 +

x2 + y2

z2
≈ z(1 +

x2 + y2

2z2
)

We also need the approximation that 1
1+x ≈ 1 for x ≪ 1. Substituting the approxi-

mation for r into the original expression,

E =
E0

z(1 + x2+y2

2z )
cos(−kz(1 +

x2 + y2

2z2
) + ϕ) ≈ E0

z
cos(−kz − k

x2 + y2

2z
+ ϕ) (4)

At constant z, the amplitude is constant, and the −kz term can be incorporated into
the constant phase ϕ, leaving us with

E ≈ E0

z
cos(−k

x2 + y2

2z
+ ϕ)

(b) Show that when this wave is propagating in the z-direction, it can be approximated by
a plane wave of constant amplitude. Assume that the distance it travels, ∆z, is much
smaller than the distance from the point source. A plane wave can be mathematically
described by

E = E0 cos(kz + ϕ)

Where E0 is the amplitude, k is the wave vector and ϕ is a constant phase.
Solution:
We use equation 4 and set x = y = 0 on the z-axis. this gives

E ≈ E0

z
cos(−kz + ϕ)

Since the range over which the wave travels is much smaller than the distance from
the point source, we can assume that the magnitude of z is constant (As opposed
to the cosine of the magnitude, which oscillates). So we can absorb the z in the
magnitude into the constant magnitude, getting

E ≈ E cos(−kz + ϕ)

4



(c) Show that a spherical wave emerging from a given object point will be converted into
a spherical wave converging to the image point given by the usual Gaussian lens law,
by using the thin-lens-phase shift.
Solution:
Assume that the lens is at the origin. A spherical wave emerging from an object point
located at d1 has the form

E =
E0

d1
cos[−k(x2 + y2)

2d1
]

The phase shift that this light acquires when it passes through a thin lens is

∆ϕ = −k(x2 + y2)
2f

so the form of the resulting wave after passing through the lens will be

E =
E0

d1
cos[−k(x2 + y2)

2d1
− k(x2 + y2)

2f
]

=
E0

d1
cos[−k(x2 + y2)

2
(

1
d1

+
1
f

)] =
E0

d1
cos[−k(x2 + y2)

2d2
)]

So the resulting wave has the form of a spherical wave emanating from a point d2.

5. Two thin lenses with focal lengths of + 6.0 cm and + 8.0 cm and apertures of 8.0 cm
and 9.0 cm, respectively, are located 4 cm apart. An aperture stop (3 cm in diameter) is
located between the two lenses, 3 cm from the first lens. An object 3 cm high is located
with its center 12 cm in front of the first lens.

(a) Draw a diagram that shows the entire imaging system.

(b) Find the position and size of the entrance and exit pupils and draw them in the
diagram from part (a).
Solution:
The exit pupil is the image of the aperture stop through the lenses between the
aperture stop and the image. In this case, the exit pupil is the image of the aperture
stop through the 8 cm lens. Since the aperture stop is located 1 cm to the left of the
lens, its image will be at

1
d2

=
1
8

+
1
−1

= −7
8

So the exit pupil will be 8
7 cm to the left of the first lens. The magnification is 8

7 , so
the diameter of the exit pupil is 24

7 = 3.4286 We can calculate the entrance pupil in
the same way:

1
d2

=
1
6

+
1
−3

= −1
6

So the entrance pupil will be 6 cm to the right of the first lens, and its diameter will
be 3 × 6

3 = 6cm.

(c) Find the position and size of the final image and draw it in the diagram from part
(a).
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(d) the image formed by the first lens is located at

1
d2

=
1
6
− 1

12
=

1
12

=

so the first image is located 12 cm to the right of the first lens. The magnification of
the first lens is -1. This image is the object for the second lens, so d1 for the second
lens is 12-4=8 cm. Then the final image is at

1
d2

=
1
8

+
1
8

=
1
4

So the final image is 4 cm to the right of the final lens. The magnification for the
second lens is 4/8 = 0.5. So the total magnification of the lens system is -0.5, meaning
that the image will be 1.5 cm high.

(e) Draw the two marginal rays and the chief ray from the top end of the object and
trace them all the way to the image.

f=+8f=+6
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6. [Adapted from Hecht 6.14] A compound lens is composed of two thin lenses separated
by 10 cm. The first of these has a focal length of +20cm, and the second a focal length
of 30cm. Determine the focal length of the combination and locate the corresponding
principal points. Draw a diagram of the system.

Solution:

Equation 6.8 of Hecht tells us that the effective focal length of a compound lens is

1
f

=
1
f1

+
1
f2

− d

f1f2
=

1
20

+
1
30

− 10
600

=
4
60
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So the effective focal length of the combination is 15 cm. The distance from the center of
the first lens to the first principal plane ie

h1 =
fd

f2
=

15 × 10
30

= 5cm

And the distance from the center of the second lens to the second principal plane ie

h2 =
fd

f1
=

15 × 10
20

= 7.5cm

With these numbers, we can find that the front focal length is 15-5=10 cm and back focal
length is 15-7.5=7.5 cm.

f=+20 cmf=+30 cm

d=10cm

h2=5cm

h1=7.5cm

First Principal Plane

Second Principal Plane

focal length=15 cm

focal length=15 cm
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