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ABCD Matrix Methods for Analyzing Optical Systems

When you want to examine a complicated optical system with many components (such as an eye,
a telescope, binoculars, microscope, or some fancy gadget you design), it can be cumbersome
to calculates object and image distances for each component. When you are dealing with the
paraxial regime and one axis, you can use a straightforward matrix method to simplify your
calculation.

In this method, we’ll consider what happens to a ray a distance r from the optic axis, traveling
in a direction θ as measured from the positive direction, as illustrated in figure 1[
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First, let’s consider what happens to r and θ when the ray is propagating a distance l through a
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Figure 1:

medium of refractive index n. If the medium is homogeneous, it doesn’t ever get bent, so θ will
not change. If θ is nonzero, r will change by | tan(θ). When we are dealing with the paraxial
regime, we can say that r changes by lθ, and then we have a transfer matrix of a ray propagating
through a homogeneous medium a distance l:[

r2

θ2

]
=

[
1 l
0 1

] [
r1

θ1

]
Now let’s consider refraction at a curved surface of radius R. R¿0 as drawn in figure ?? because
the center of the arc is to the left of the lens position. Let α be the angle between the optic
axis and the radius of curvature of the survace where the ray strikes the surface. Then if the
ray is at position r then sin(α) = r

R . The angle of incidence between the surface and the ray is
ϕ1 = α + θ.
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Now we use snell’s law:
and when we go through all this math we see that in the paraxial region,

θ2 =
n1

n2
θ1 +

n1 − n2

n2

r

R

And since we are just looking at refraction, r doesn’t change. So we get that the transfer matrix
for a curved interface is [

r2

θ2

]
=

[
1 0

n1−n2
Rn2

n1
n2

] [
r1

θ1

]
If the radius of curvature is negative, the same expression will hold, except we’ll use a negative
value for R. So if we want to put two refractive surfaces together to form a thin lens, we can do
that easily. Here n1 is the refractive index of the surrounding medium, and n2 is the refractive
index of the glass.:

[
r3

θ3

]
=

[
1 0

n2−n1
R2n1

n2
n1

] [
r2

θ2

]
=

[
1 0

n2−n1
R2n1

n2
n1

] [
1 0

n1−n2
R1n2

n1
n2

] [
r1

θ1

]
=

[
1 0

n2−n1
R2n1

+ n1−n2
R1n2

n2
n1

1

] [
r1

θ1

]
Simplifying the nontrivial element of the final matrix and recognizing the lensmaker’s equation,

n2 − n1

R2n1
+

n1 − n2

R1n1
=

n2 − n1

n1
(

1
R2

− 1
R1

) = − 1
flens

So for a Gaussian thin lens, we have[
r3

θ3

]
=

[
1 0
− 1

f 1

] [
r1

θ1

]
Notice that if the rays pass into from a medium of refractive index n1 a medium of refractive
index n2, you can model it as an interface with infinite radius, and the matrix for that would be[

1 0
0 n1

n2

]
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