# **Chapter 1 Basic Properties of Light**

Light is described using 3 pictures - seemingly contradictory!

Waves - Rays - Photons

Waves

# [Reading Assignment: Hecht, Chapter 2 (most of this should be review), 3.2, 3.3, 3.4.4, 3.5, 3.6]

A propagating "disturbance" in *electric* and *magnetic* field (simultaneously!)



- At a fixed point in space, the electric field oscillates in time. At a fixed point in time, we see a wave train frozen.
- This is called a plane-wave because the field is constant everywhere in the x-y plane at a given z. Another way to draw this is



"wave-fronts" surface of constant "phase" or "phase-fronts"

• The wavefront advances by a distance  $\lambda$ , in a time 1/f. So the velocity is  $v = distance/time = \lambda f$ . One of the many remarkable properties of light is it's universal, constant speed:

$$c = 2.997 \times 10^8 \text{ m/sec}$$
  $c = \lambda f$ 

• The physics of electromagnetic (EM) wave propagation is valid for <u>arbitrary</u>  $\lambda$ , *f*. On Earth, we can generate, manipulate and/or detect EM waves with wavelength from ~100 km all the way down to

in vacuum

 $\sim 10^{-6} A^{\circ}$ . Usually we describe light by <u>wavelength</u> rather then frequency, except in the microwave and radio regions.

• The electromagnetic spectrum encompasses the complete range of frequency/wavelength. Different regions have different names. Radio, microwave, infrared, visible, ultraviolet, x-ray,  $\gamma$ -ray.

#### **Index of Refraction**

• When light travels in materials, the speed is modified:

$$\nu = \frac{c}{n} = \lambda f$$

Usually  $n \ge 1$ . (It can be < 1)

- The reason is that the electric field shakes the electrons, which tends to drag the field.
- Plane wave still has the same form:  $\vec{E} = E\hat{x}\cos\left(\frac{2\pi}{\lambda}z 2\pi ft\right)$ , but the effective wavelength becomes

modified by *n*. If we define the vacuum wavelength.  $\lambda_{\text{vac}} = \frac{c}{f}$  then in the material  $\lambda = \frac{c}{nf} = \frac{\lambda_{\text{vac}}}{n}$ . The wavelength becomes shorter, if n > 1.

#### Dispersion

The index of refraction in most materials depends on wavelength.  $n(\lambda)$ . This is called dispersion.



In air – the index depends also on air pressure, humidity, and temperature which leads to many beautiful atmospheric effects.

#### Wavelength units (length)

We commonly use Angstrom units (Å) for light wavelength.

$$1 \text{ Å} = 10^{-8} \text{ cm} = 0.1 \text{ nm}$$

This is of the order of the size of an atom. We also use standard metric units: m, cm, mm, nm

Visible light ~ 4000  $\rightarrow$  7000 A  $^{\circ}$  , 400  $\rightarrow$  700 nm, 0.4  $\rightarrow$  0.7  $\mu m$ 

# **Spherical Waves**

Another type of ideal light wave.Constant phase fronts are <u>circular</u>, emanating from a <u>point source</u>. Far away from the source, the radius of the circle becomes so large that we can approximate the wave as a plane wave.



we have 
$$E = E_{\circ} \frac{\cos\left(\frac{2\pi}{\lambda}r - 2\pi ft\right)}{r}$$

For spherical waves, we have

# Huygens' Principle

Very useful model for wave propagation.

- Every point on a wavefront is regarded as a secondary point source generating a spherical wavelet.
- The advance of the wave front is found at the envelope of all these wavelets



• Generally, this seems to give parallel wavefronts. But things get interesting at <u>edges</u>. This leads to <u>dif</u><u>fraction</u> (more later).

## Rays

• Follow a point on the wavefront. As the wavefront advances the point traces a <u>straight line</u>. This is a <u>ray of light</u>.

• For many cases, we can forget the waves and just <u>trace rays</u> in optical systems. This allows a vast simplification of our analysis and design processes. Virtually all optical design is done with rays. Highly sophisticated optical design CAD programs are available for ray tracing.



Photons (light "particles")

- This picture has light represented by tiny bundles of energy (or quanta), following straight line paths along the rays.
- The coexistence of electromagnetic wave physics and photon physics is the central paradox of quantum mechanics.
- Each photon has an energy given by

E = hvh = 6.62 × 10<sup>-34</sup> J-s 1 W= 1J per second h is Planck's constant

For 2eV visible photons,

 $1W = 6.3 \times 10^{18} eV/s$ = 3.15 × 10<sup>18</sup> photons/sec

• Light power  $\rightarrow$  photons/sec

## **Photoelectric Effect**



• The electron energy is directly related to the photon energy.

- When the photon energy is below threshold value, no electrons are emitted . The threshold depends on the metal. It is called the work function.
- When the light power is low  $\sim 10^2 \rightarrow 10^3$  photons/sec  $\rightarrow$  each individual electron can be separated and counted. This called photon counting (more later).

#### **Atomic Radiation**

• Atoms have energy states corresponding to electron orbits.



- One atom "jumps" from a higher energy state to a lower energy state and emits one photon.
- Photons are not point particles. They have a wave-like property. A useful picture is the wave-packet.



Many photon packets can be thought of as superimposing to make up a plane wave, spherical wave or any other wave.

The typical photon energy unit is the electron-Volt. This is defined as the energy required to push one electron across a one-Volt potential,

$$1 eV = 1.6 \times 10^{-19} J$$

Typical visible photon energy  $\sim 1.2 \rightarrow 2.3 \ eV$ 

## **Reflection and Refraction, Snell's Law**

## [Reading assignment: Hecht 4.3, 4.4, 4.7]

An important element of optics is the interface between 2 materials with different index of refraction



$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} \rightarrow \begin{array}{cc} \text{if } n_2 > n_1 & \theta_2 < \theta_1 \\ \text{if } n_1 > n_2 & \theta_2 > \theta_1 \end{array}$$

# **Total Reflection**

If  $n_1 > n_2$ , then we can have



The refracted ray disappears! The light is totally reflected. This usually occurs inside a prism, and is called total internal reflection.  $\theta_c =$  "critical angle". For a typical glass with n = 1.5, the critical angle is:



So for  $\theta = 45^{\circ}$ , the light is reflected. A very common prism is the right angle prism



#### Light Impinging at a Surface

The plane containing the light ray propagation vector and the surface normal is called the "<u>plane of inci-dence</u>"



• For a general polarization state incident on a surface, we choose s and p directions to decompose the polarization effects.

#### **Fresnel Reflection Coefficients**

#### [Optional reading: Hecht 4.6]

The magnitude of reflection and transmission at an interface between  $n_1$  and  $n_2$  are given by

$$\begin{split} \mathbf{R}_{p} &= \frac{\tan^{2}(\theta_{2} - \theta_{1})}{\tan^{2}(\theta_{2} + \theta_{1})} & \mathbf{T}_{p} &= \frac{n_{2}\cos\theta_{2}}{n_{1}\cos\theta_{1}} \frac{4\sin^{2}\theta_{2}\cos^{2}\theta_{1}}{\sin^{2}(\theta_{1} + \theta_{2})\cos^{2}(\theta_{1} - \theta_{2})} \\ \mathbf{R}_{s} &= \frac{\sin^{2}(\theta_{2} - \theta_{1})}{\sin^{2}(\theta_{2} + \theta_{1})} & \mathbf{T}_{s} &= \frac{n_{2}\cos\theta_{2}}{n_{1}\cos\theta_{1}} \frac{4\sin^{2}\theta_{2}\cos^{2}\theta_{1}}{\sin^{2}(\theta_{1} + \theta_{2})} \\ \end{split}$$
near  $\theta_{1} = 0$ ,  $\mathbf{R}_{s} = \mathbf{R}_{p} = \left(\frac{n_{2} - n_{1}}{n_{2} + n_{1}}\right)^{2}$ . Notice also, if  
 $\theta_{2} + \theta_{1} = \frac{\pi}{2}$ , then  $\tan \rightarrow \infty$ , and  $\mathbf{R}_{p} \rightarrow 0$ .

 $\theta_1$  can be shown to be given by

This angle is known as "Brewster's angle" or

the "Polarizing angle".

#### Polarization

#### Reading Assignment: Hecht 8.1, 8.2]

• Light waves have transverse polarization

- The electric field vector points in a direction perpendicular to the propagation direction (ray direction).
- The magnetic field vector is orthogonal to propagation direction. Generally, we can ignore the magnetic field.
- The e-field vector can lie <u>anywhere</u> in transverse plane

# **Polarization State**

- The e-field oscillates in time at a given point in space
- For light wave propagating in z-direction, let's look in the x-y plane.



#### Chapter 1: BASIC PROPERTIES OF LIGHT

#### Polarizers are devices which select one polarization

- Polarizing sheet has an allowed direction
  - transmits polarization component of incident light along the allowed direction
  - transmitted light is linearly polarized
- polarizing beamsplitter

