EE119 Discussion Section 7

(03/15/10) Professor: Jeff Bokor TA: Xi Luo

I. Photomultiplier Tube

Example:

A PMT with 8 dynodes and $\delta = 5$ is used to detect a laser beam at $\lambda = 630nm$. The quantum efficiency of the PMT at this wavelength is ~50%. Assume the laser power incident on the PMT is 3×10^{-9} W.

- Photoelectric effect

What is the maximum possible value of the work function of the photocathode?

- Quantum efficiency

How many photo-electrons are generated at the photocathode per second?

- Gain

What is the anode current?

- Dark current
 - a) If the cathode dark current is found to be 5×10^4 e/sec at room temperature (300K), what is the minimum detectable power of this PMT?
 - b) What would the cathode dark current be if you cool the PMT down to 200K? Does it suggest a way of reducing the dark current? What is the minimum detectable power now? How much improvement in the sensitivity of the PMT you've gained in cooling it down?

- Shot noise; Poisson statistics; SNR

Given the same cathode dark current at 300K, what is the shot noise? What is the signal-to-noise ratio?

Assume the bandwidth is 1Hz, which means that, the integration time is 1 sec.

II. Brief intro to semiconductor and p-n junction