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Gaussian beams
Plane waves: E(x,y,z) = Eyei(kz-ob),

Another solution to Maxwell’s equations:

E(x,Y,2z) = Eg¥(x,y, z)e"i(kz-0h

transverse beam profile
varies slowly with z

— Paraxial approximation: ¥ variation with z is slow compared to x, y variation.

— Plug this form into Maxwell’s equations. Use paraxial approximation. The resulting solution is:

Wnexp[—ikz + in(z 242 2 4 y2
E = 00 p[ T]()]ex[_x+y_ix+yJ
w(z) w2(2) 2R(2)
_gx2+!22
The transverse amplitude profile of the beam is Gaussian: [E(x, y)l = Ege w?

w(z) : transverse beam radius
w(z) = wo[1+(z/25)2]/2

R(z) : spherical wavefront radius of beam
R(z) = z+23/12

1n(z) : phase shift of plane wave phase
n(2) = tan (z/z)

YA
A R(2)
“waist”
z=0
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w(z) : beam spot size. w(z = 0) = wq (minimum spot)
R(z) . wavefront curvature.

R(z) = w at z = 0; R(z) =z for z»zy

W2
R =

zg - Rayleigh range — distance where w = ./2 w

= —2: increases with increasing w,
. increases with decreasing A

Lasers can be made to generate this Gaussian beam (in most cases)

« Use one or two curved mirrors
M,, Ry AS

Mz’ R2

W

/\%

-

Given R, R,, L, there is one unique Gaussian beam (transverse mode) that fits into the laser resona-

tor. Gaussian beam curvature must match mirror curvatures Ry, R, . Beam waist occurs accordingly.

The output beam is simply the continuation of this Gaussian beam.

To get the beam waist to occur right at the laser output mirror, we use a flat output mirror:

M

Ry AS

We have to limit the transverse aperture in the laser resonator in order to select the Gaussian mode.
We could use a special aperture sized to ~ 3w. Or, the laser gain medium itself could be the aperture:

A

Brewster windows
on laser tube

Properties of Gaussian beam
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« Long collimation length: | z; =

|

Take wy = 0.5 mm, A = 632 nm (HeNe laser) . S0, Z, = 1.2 meters.

« Low divergence: | w(z)=w, EZ— for z» z
_ 2z
TEWO
04 : divergence half angle - = — — — - 9 _ _
——=—- - - """
In the paraxial approximation, 042 wz) o r
z TEWO

Continuing with our example, w, = 0.5 mm, & = 632 nm, 6, = 0.4 mrad. So, after 10 m,
w(10 m)=4 mm.

Effect of a lens on a Gaussian beam

« The beam size is unaffected by the lens.
e The beam radius of curvature obeys lens law

1

R

0

=l

+ L
R;

After the lens, the beam has a radius of curvature R, . The beam reaches a focus at distance ~ R (if
f»zp).

Suppose the lens has a 4cm diameter, the beam radius at the lens is w(lens) = 1 cm, and that
R, = 10 cm.

Ry

It is easy to show that W, = ———— . Then for our case, w, = 2um.
nw(lens) 0

N

(0]
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Note, w(lens)/Ry=NA. So, w, = ﬁ ~ 0.32& . This is reminiscent of our finding for imaging sys-

tems that resolution = 0.6&\. The spot size for a focused Gaussian beam is very closely related to

imaging resolution.
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